scholarly journals An automatic ionization spectrometer

Author(s):  
W. A. Wooster ◽  
Archer John Porter Martin ◽  
Ernest Rutherford

1—The detailed determination of the structure of crystals requires an accurate knowledge of the relative intensities of reflexion of X-rays from a considerable number of selected planes in a crystal. The ionization spectrometer has long been used for this purpose and recently accurate photometric photographic methods have been developed for the same work. With previously existing apparatus the labour entailed in using either method has been very great and it was thought that an automatic machine would be a great improvement, for certain investigations have been impeded and others made practically impossible by the labour of intensity measurement. There are two kinds of operation performed by the ionization spectrometer which will be treated quite separately, namely the setting of the crystal in the position so that the X-rays will be reflected from a specified plane, and the recording of the ionization current produced in the ionization chamber by the reflected X-rays. The second process has already been extensively studied, but there are two new features in the method used here. The first problem of setting the crystal automatically has been solved for the first time as far as the authors are aware. The Cycle of Operations 2—The use of a crystal plate cut perpendicular to the whole set of planes under investigation (which may number a hundred or more) was introduced by Bragg and West, and has since been extensively used. X-rays are passes through a thin plate which must be set so that the particular plane under investigation is ( a ) vertical (for the crystal and plate rotate about a vertical axis), ( b ) inclined to the X-ray beam at an angle which satisfies Bragg's law.

2018 ◽  
Vol 63 (2) ◽  
pp. 62-64 ◽  
Author(s):  
А. Белоусов ◽  
A. Belousov ◽  
Г. Крусанов ◽  
G. Krusanov ◽  
А. Черняев ◽  
...  

Purpose: Determining the absorbed dose produced by photons, it is often assumed that it is equal to the radiation kerma. This assumption is valid only in the presence of an electronic equilibrium, which in turn is never ensured in practice. It leads to some uncertainty in determining the absorbed dose in the irradiated sample during radiobiological experiments. Therefore, it is necessary to estimate the uncertainty in determining the relative biological effectiveness of X-rays associated with uncertainty in the determination of the absorbed dose. Material and methods: The monochromatic X-ray photon emission is simulated through a standard 25 cm2 plastic flask containing 5 ml of the model culture medium (biological tissue with elemental composition C5H40O18N). The calculation of the absorbed dose in a culture medium is carried out in two ways: 1) the standard method, according to which the ratio of the absorbed dose in the medium and the ionization chamber is equal to the ratio of kerma in the medium and air; 2) determination of the absorbed dose in the medium and in the sensitive volume of the ionization chamber by computer simulation and calculating the ratio of these doses. For each primary photon energies, 108 histories are modeled, which makes it possible to achieve a statistical uncertainty not worse than 0.1 %. The energy step was 1 keV. The spectral distribution of X-ray energy is modeled separately for each set of anode materials, thickness and materials of the primary and secondary filters. The specification of the X-ray beams modeled in this work corresponds to the standards ISO 4037 and IEC 61267. Within the linear-quadratic model, the uncertainty of determining the RBEmax values is directly proportional to the uncertainty in the determination of the dose absorbed by the sample under study. Results: At energy of more than 60 keV, the ratios for water and biological tissue practically do not differ. At lower energies, up to about 20 keV, the ratio of the coefficients of air and water is slightly less than that of air and biological tissue. The maximum difference is ~ 1 % than usual and the equality of absorbed doses in the ionization chamber and sample is justified. At photon energy of 60 keV for the geometry in question, the uncertainty in determining the dose is about 50 %. For non-monochromatic radiation, the magnitude of the uncertainty is determined by the spectral composition of the radiation, since the curves vary greatly in the energy range 10–100 keV. It is shown that, depending on the spectral composition of X-ray radiation, uncertainty in the determination of the absorbed dose can reach 40–60 %. Such large uncertainty is due to the lack of electronic equilibrium in the radiation geometry used in practice. The spread of RBE values determined from the data of radiobiological experiments carried out by different authors can be determined both by differences in the experimental conditions and by uncertainty in the determination of the absorbed dose. Using Fricke dosimeters instead of ionization chambers in the same geometry allows you to reduce the uncertainty approximately 2 times, up to 10–30 %. Conclusion: The computer simulation of radiobiological experiments to determine the relative biological effectiveness of X-ray radiation is performed. The geometry of the experiments corresponds to the conditions for the use of standard bottles placed in the side holders. It is shown that the ratio of absorbed doses and kerma in the layers of biological tissue and air differ among themselves with an uncertainty up to 60 %. Depending on the quality of the beam, the true absorbed dose may differ from the one calculated on the assumption of kerma and dose equivalence by 50 %. Uncertainty in determining the RBE in these experiments is of the same order. The results are presented for X-ray beams with negligible fraction of photons with energies less than 10 keV. For beams of a different quality, the uncertainty in determination can significantly increase. For the correct evaluation of RBE, it is necessary to develop a uniform standard for carrying out radiobiological experiments. This standard should regulate both the geometry of the experiments and the conduct of dosimetric measurements.


2015 ◽  
Vol 93 (12) ◽  
pp. 1532-1540 ◽  
Author(s):  
F. Akman ◽  
R. Durak ◽  
M.R. Kaçal

The total attenuation cross section at the K edge, absorption jump ratio, jump factor, Davisson–Kirchner ratio, and oscillator strength parameters for the K shell were determined by measuring the total attenuation cross sections around the K edge for Pr, Nd2O3, and Sm. The measurements were performed in a secondary excitation geometry using the Kα2, Kα1, Kβ1, and Kβ2 X-rays (in the region from 31.817 to 55.293 keV) from different secondary source targets excited by the 59.54 keV γ-photons from an 241Am annular source. It is the first time that the Davisson–Kirchner ratio values have been determined for present samples. The experimental results were compared with the theoretically calculated and other available experimental results.


Author(s):  
J N Chapman ◽  
W A P Nicholson

Energy dispersive x-ray microanalysis (EDX) is widely used for the quantitative determination of local composition in thin film specimens. Extraction of quantitative data is usually accomplished by relating the ratio of the number of atoms of two species A and B in the volume excited by the electron beam (nA/nB) to the corresponding ratio of detected characteristic photons (NA/NB) through the use of a k-factor. This leads to an expression of the form nA/nB = kAB NA/NB where kAB is a measure of the relative efficiency with which x-rays are generated and detected from the two species.Errors in thin film x-ray quantification can arise from uncertainties in both NA/NB and kAB. In addition to the inevitable statistical errors, particularly severe problems arise in accurately determining the former if (i) mass loss occurs during spectrum acquisition so that the composition changes as irradiation proceeds, (ii) the characteristic peak from one of the minority components of interest is overlapped by the much larger peak from a majority component, (iii) the measured ratio varies significantly with specimen thickness as a result of electron channeling, or (iv) varying absorption corrections are required due to photons generated at different points having to traverse different path lengths through specimens of irregular and unknown topography on their way to the detector.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 169 ◽  
Author(s):  
Mahbubur Rahman ◽  
Pasan Hettiarachchi ◽  
Vernon Cooray ◽  
Joseph Dwyer ◽  
Vladimir Rakov ◽  
...  

We present observations of X-rays from laboratory sparks created in the air at atmospheric pressure by applying an impulse voltage with long (250 µs) rise-time. X-ray production in 35 and 46 cm gaps for three different electrode configurations was studied. The results demonstrate, for the first time, the production of X-rays in gaps subjected to switching impulses. The low rate of rise of the voltage in switching impulses does not significantly reduce the production of X-rays. Additionally, the timing of the X-ray occurrence suggests the possibility that the mechanism of X-ray production by sparks is related to the collision of streamers of opposite polarity.


1996 ◽  
Vol 11 (5) ◽  
pp. 1169-1178 ◽  
Author(s):  
Kentaro Suzuya ◽  
Michihiro Furusaka ◽  
Noboru Watanabe ◽  
Makoto Osawa ◽  
Kiyohito Okamura ◽  
...  

Mesoscopic structures of SiC fibers produced from polycarbosilane by different methods were studied by diffraction and small-angle scattering of neutrons and x-rays. Microvoids of a size of 4–10 Å in diameter have been observed for the first time by neutron scattering in a medium momentum transfer range (Q = 0.1–1.0 Å−1). The size and the volume fraction of β–SiC particles were determined for fibers prepared at different heat-treatment temperatures. The results show that wide-angle neutron scattering measurements are especially useful for the study of the mesoscopic structure of multicomponent materials.


Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 273 ◽  
Author(s):  
José Brandão-Neto ◽  
Leonardo Bernasconi

Macromolecular crystallography at cryogenic temperatures has so far provided the majority of the experimental evidence that underpins the determination of the atomic structures of proteins and other biomolecular assemblies by means of single crystal X-ray diffraction experiments. One of the core limitations of the current methods is that crystal samples degrade as they are subject to X-rays, and two broad groups of effects are observed: global and specific damage. While the currently successful approach is to operate outside the range where global damage is observed, specific damage is not well understood and may lead to poor interpretation of the chemistry and biology of the system under study. In this work, we present a phenomenological model in which specific damage is understood as the result of a single process, the steady excitation of crystal electrons caused by X-ray absorption, which acts as a trigger for the bulk effects that manifest themselves in the form of global damage and obscure the interpretation of chemical information from XFEL and synchrotron structural research.


2018 ◽  
Vol 4 (10) ◽  
pp. eaat7259 ◽  
Author(s):  
Nan Yan ◽  
Nan Xia ◽  
Lingwen Liao ◽  
Min Zhu ◽  
Fengming Jin ◽  
...  

The transition from nanocluster to nanocrystal is a central issue in nanoscience. The atomic structure determination of metal nanoparticles in the transition size range is challenging and particularly important in understanding the quantum size effect at the atomic level. On the basis of the rationale that the intra- and interparticle weak interactions play critical roles in growing high-quality single crystals of metal nanoparticles, we have reproducibly obtained ideal crystals of Au144(SR)60 and successfully solved its structure by x-ray crystallography (XRC); this structure was theoretically predicted a decade ago and has long been pursued experimentally but without success until now. Here, XRC reveals an interesting Au12 hollow icosahedron in thiolated gold nanoclusters for the first time. The Au–Au bond length, close to that of bulk gold, shows better thermal extensibility than the other Au–Au bond lengths in Au144(SR)60, providing an atomic-level perspective because metal generally shows better thermal extensibility than nonmetal materials. Thus, our work not only reveals the mysterious, long experimentally pursued structure of a transition-sized nanoparticle but also has important implications for the growth of high-quality, single-crystal nanoparticles, as well as for the understanding of the thermal extensibility of metals from the perspective of chemical bonding.


2006 ◽  
Vol 49 (spe) ◽  
pp. 17-23 ◽  
Author(s):  
Carlos de Austerlitz ◽  
Viviane Souza ◽  
Heldio Pereira Villar ◽  
Aloisio Cordilha

The performance of four X-ray qualities generated in a Pantak X-ray machine operating at 30-100 kV was determined with a parallel-plate ionization chamber and a Fricke dosimeter. X-ray qualities used were those recommended by Deutsch Internationale Normung DIN 6809 and dose measurements were carried out with Plexiglas® simulators. Results have shown that the Fricke dosimeter can be used not only for soft X-ray dosimetry, but also for the maintenance of low-energy measuring systems' calibration factor.


Author(s):  
José Brandão-Neto ◽  
Leonardo Bernasconi

Macromolecular crystallography at cryogenic temperatures has so far provided the majority of the experimental evidence that underpins the determination of the atomic structures of proteins and other biomolecular assemblies by means of single crystal X-ray diffraction experiments. One of the core limitations of the current methods is that crystal samples degrade as they are subject to X-rays, and two broad groups of effects are observed: global and specific damage. While the currently successful approach is to operate outside the range where global damage is observed, specific damage is not well understood and may lead to poor interpretation of the chemistry and biology of the system under study. In this work, we present a phenomenological model in which specific damage is understood as the result of a single process, the steady excitation of crystal electrons caused by X-ray absorption, which acts as a trigger for the bulk effects that manifest themselves in the form of global damage and obscure the interpretation of chemical information from XFEL and synchrotron structural research.


The measurement of the intensity of an X-ray beam in absolute units is in theory most satisfactorily accomplished by a determination of its heating effect. The method, however, is attended by considerable experimental difficulties, so that its application is very limited, and in practice it is usual to replace it by a determination of the ionization produced when the beam is passed through a gas. To correlate the ionization with an absolute intensity requires a quantitative knowledge of the details of the interaction between the X-rays and the molecules concerned and of the ionization of the gas by the ejected electrons. It sometimes happens that the processes involved about which we know least are relatively unimportant, so that a fairly reliable correlation can be made; and much work has been done on the application of the ionization method to X-ray dosimetry. But in general a quantitative correlation between ionization and intensity is not possible. A further study of the ionization of gases by X-rays is therefore desirable; moreover it may be made to yield important information concerning the processes involved. The early development of the physics of X-rays contains many examples of this, and more recently an important contribution has been made by Stockmeyer. The events leading to the ionization of a heavy gas are exceedingly complicated, whereas in the light gases (hydrogen and helium) some of these events are absent or else occur to a negligible extent, so that the interpretation of experiments with the latter becomes simpler and more reliable. These gases are therefore specially worthy of study. Moreover, for them the application of quantum mechanics leads to the most definite results for comparison with experiment, and in particular permits of a direct test of some aspects of Dirac’s theory of recoil scattering. The ionization due to the gas itself is, however, very small, and may even be less than the secondary ionization due to electrons liberated from the chamber walls. The technique used in ionization measurements with heavy gases is therefore unsuitable. Hitherto the only attempt made to extend such measurements to light gases is an experiment carried out in 1915 on hydrogen by Shearer who, however, obtained very variable results and an ionization markedly smaller than that to be expected from recoil electrons alone. Moreover his experimental method is now open to criticism in view of our greater knowledge of X-rays, and in particular the fluorescent radiation used was of doubtful homogeneity. The present paper will describe a new technique suitable for quantitative measurements of the ionization produced by X-rays in light gases, and in another paper it will be applied to a re-investigation of hydrogen.


Sign in / Sign up

Export Citation Format

Share Document