scholarly journals Experimental investigations of very long waves reflected from the ionosphere

This paper is an account of experiments which have been carried out to determine the characteristic features (amplitude, height of reflexion, and polarization) of waves of very great length (18·8 km) reflected from the ionosphere at fairly small angles of incidence. The transmission characteristics of long waves have previously been studied by Holling-worth, Naismith, and Namba. In Hollingworth's pioneer experiment measurement were made on the space characteristics of the interference pattern produced at the ground by the superposition of the direct and the downcoming wave. the observations were made within the range 300-1000 bin from the sender, during the daytime, and one minimum and one maximum of the interference pattern were located. With the large distances to be covered the measurements extended over three months, and it was necessary to assume constancy of the conditions from day to day. The result demonstrate the presence of the interference system in a very beautiful manner, but cannot be used for an accurate determination of the height of reflexion at any one time. In §2 of the present paper we describe experiments, of the same type as Holling-worth's, carried out at shorter distances (70-140 km). The advantage of using shorter transmission distances are twofold. Firstly, it is possible to make sufficient measurements in the course of a single day (or night) to determine the reflexion height and the reflexion coefficient for a single day (or night), and, secondly, the information derived applies to the conditions of nearly vertical incidence, and so is more directly comparable with the detailed information which is now available concerning short waves. In the papers mentioned above muck attention has been given to the observation and explanation of the effects observed near sunset. It is pointed out that if the resultant signal strength on a single aerial system is alone observed, it is impossible to decide whether the changes are due to changes of amplitude, phase, or polarization of the downcoming wave. Assuming that the sunset variations are due entirely to phase variations, Hollingworth first deduced a change of reflexion height from 75 km to 90 km during sunset, but later believed that the variations were almost entirely explained by a rotation of the plane of polarization of the wave, and that the change of reflexion height was only about 2 km. Naismith states that no sunset variations are observable at short distances (100 km) from the sender, and suggests that at vertical incidence the waves are reflected from a higher level which does not exhibit changes at sunset.

In a previous paper Best, Ratcliffe and Wilkes (1936) described two kinds of measurement made on waves of length 18.8 km. (frequency 16 kc./sec.) emitted from the British Post Office sender GBR situated at Rugby. In the first kind of measurement the interference pattern produced at the ground by the superposition of the ground wave and the downcoming wave was investigated over a range of distances from 65 to 145 km. from the sender in a fine running east from Rugby. From the observed positions of the maxima and minima of this ground interference pattern it was concluded that the waves were probably reflected from a height of about 74 km. on a September day, although, because of uncertainties in assigning the order of interference to the different maxima, the possible reflexion heights of approximately 62 and 85 km. could not be definitely excluded. The results were interpreted on the assumption that reflexion took place at a horizontal surface without change of phase. In § 2 of the present paper we describe an extension of these measurements to greater distances. At first the measurements were extended to the sea along the line running east from Rugby, and later were continued to greater distances on a line running north from Rugby. These measurements enabled us to take a further step in resolving the ambiguity in the determination of the reflexion height, and to compare the propagation characteristics in a northerly and an easterly direction.


1939 ◽  
Vol 29 (3) ◽  
pp. 427-462 ◽  
Author(s):  
Perry Byerly

Summary Least-squares adjustments of observations of waves of the P groups at central and southern California stations are used to obtain the speeds of various waves. Only observations made to tenths of a second are used. It is assumed that the waves have a common velocity for all earthquakes. But the time intercepts of the travel-time curves are allowed to be different for different shocks. The speed of P̄ is found to be 5.61 km/sec.±0.05. The speed for S̄ (founded on fewer data) is 3.26 km/sec. ± 0.09. There are slight differences in the epicenters located by the use of P̄ and S̄ which may or may not be significant. It is suggested that P̄ and S̄ may be released from different foci. The speed of Pn, the wave in the top of the mantle, is 8.02 km/sec. ± 0.05. Intermediate P waves of speeds 6.72 km/sec. ± 0.02 and 7.24 km/sec. ± 0.04 are observed. Only the former has a time intercept which allows a consistent computation of structure when considered a layer wave. For the Berkeley earthquake of March 8, 1937, the accurate determination of depth of focus was possible. This enabled a determination of layering of the earth's crust. The result was about 9 km. of granite over 23 km. of a medium of speed 6.72 km/sec. Underneath these two layers is the mantle of speed 8.02 km/sec. The data from other shocks centering south of Berkeley would not fit this structure, but an assumption of the thickening of the granite southerly brought all into agreement. The earthquakes discussed show a lag of Pn as it passes under the Sierra Nevada. This has been observed before. A reconsideration of the Pn data of the Nevada earthquake of December 20, 1932, together with the data mentioned above, leads to the conclusion that the root of the mountain mass projects into the mantle beneath the surface layers by an amount between 6 and 41 km.


2021 ◽  
Author(s):  
Sayyad Zahid Qamar ◽  
Maaz Akhtar ◽  
Tasneem Pervez

Little data is available about the material properties and swelling response of the elsatomers used in swell packers. This information is necessary for modeling and simulation of these elastomers in different petroleum applications. An experimental setup was therefore designed and implemented at Sultan Qaboos University (SQU) to investigate the material behavior of these elastomers under tension and compression, so that these properties could be used for different simulations. Before developing a finite element model (FEM) of elastomer seal performance, it was felt that a thorough evaluation needs to be carried out to decide which of the currently available material models is most suitable for swelling elastomers. This comparison translates into the selection of the correct strain energy function for accurate determination of material coefficients. Different hyperelastic material models are compared here. Experimental investigations under tensile and compressive loads, along with their numerical analysis are presented in detail in this chapter.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Author(s):  
M.A. Gribelyuk ◽  
M. Rühle

A new method is suggested for the accurate determination of the incident beam direction K, crystal thickness t and the coordinates of the basic reciprocal lattice vectors V1 and V2 (Fig. 1) of the ZOLZ plans in pixels of the digitized 2-D CBED pattern. For a given structure model and some estimated values Vest and Kest of some point O in the CBED pattern a set of line scans AkBk is chosen so that all the scans are located within CBED disks.The points on line scans AkBk are conjugate to those on A0B0 since they are shifted by the reciprocal vector gk with respect to each other. As many conjugate scans are considered as CBED disks fall into the energy filtered region of the experimental pattern. Electron intensities of the transmitted beam I0 and diffracted beams Igk for all points on conjugate scans are found as a function of crystal thickness t on the basis of the full dynamical calculation.


Author(s):  
F.A. Ponce ◽  
H. Hikashi

The determination of the atomic positions from HRTEM micrographs is only possible if the optical parameters are known to a certain accuracy, and reliable through-focus series are available to match the experimental images with calculated images of possible atomic models. The main limitation in interpreting images at the atomic level is the knowledge of the optical parameters such as beam alignment, astigmatism correction and defocus value. Under ordinary conditions, the uncertainty in these values is sufficiently large to prevent the accurate determination of the atomic positions. Therefore, in order to achieve the resolution power of the microscope (under 0.2nm) it is necessary to take extraordinary measures. The use of on line computers has been proposed [e.g.: 2-5] and used with certain amount of success.We have built a system that can perform operations in the range of one frame stored and analyzed per second. A schematic diagram of the system is shown in figure 1. A JEOL 4000EX microscope equipped with an external computer interface is directly linked to a SUN-3 computer. All electrical parameters in the microscope can be changed via this interface by the use of a set of commands. The image is received from a video camera. A commercial image processor improves the signal-to-noise ratio by recursively averaging with a time constant, usually set at 0.25 sec. The computer software is based on a multi-window system and is entirely mouse-driven. All operations can be performed by clicking the mouse on the appropiate windows and buttons. This capability leads to extreme friendliness, ease of operation, and high operator speeds. Image analysis can be done in various ways. Here, we have measured the image contrast and used it to optimize certain parameters. The system is designed to have instant access to: (a) x- and y- alignment coils, (b) x- and y- astigmatism correction coils, and (c) objective lens current. The algorithm is shown in figure 2. Figure 3 shows an example taken from a thin CdTe crystal. The image contrast is displayed for changing objective lens current (defocus value). The display is calibrated in angstroms. Images are stored on the disk and are accessible by clicking the data points in the graph. Some of the frame-store images are displayed in Fig. 4.


Sign in / Sign up

Export Citation Format

Share Document