scholarly journals The resistance of superconducting cylinders in a transverse magnetic field

Experiments on the penetration of a magnetic field (de Haas and Casimir-Jonker 1934) into superconductors have shown that, when a superconducting cylinder is placed in an increasing transverse field, penetration of the field first occurs when the applied field strength reaches a value 0·50 H k , where H k is the critical field corresponding to the temperature of the experiment. Since, for this value of the applied field, the field strength, at the surface of the cylinder (von Laue 1932) where it is intersected by a diametral plane perpendicular to the direction of the field, will be precisely H k , the above result is in accordance with expectation. On the other hand, it was found by de Haas, Voogd and Jonker (1934) that under the same conditions the cylinder first exhibited electrical resistance when the applied field strength reached the value 0·58 H k . Since this discrepancy probably results from the properties of the “intermediate state” (Peierls 1936; London 1936; Landau 1937) occurring when the magnetic field just begins to penetrate the superconductor, it seemed desirable to investigate the matter in more detail.

2008 ◽  
Vol 06 (supp01) ◽  
pp. 567-573 ◽  
Author(s):  
TONY J. G. APOLLARO ◽  
ALESSANDRO CUCCOLI ◽  
ANDREA FUBINI ◽  
FRANCESCO PLASTINA ◽  
PAOLA VERRUCCHI

We study the ground-state entanglement properties of an XX spin 1/2 chain in transverse field, in its quasi-long-ranged ordered phase, with a magnetic impurity, represented in terms of an additional transverse magnetic field located at one precise site. For such a system, we show that a control of the ground state entanglement can be achieved by acting on the impurity field. To demonstrate this possibility, we evaluate exactly the nearest neighbor and next-nearest neighbor concurrence in the presence of the impurity. It turns out that either an enhancement or a quenching of entanglement between selected spin pairs can be obtained by acting on the intensity of the impurity. For specific values of the magnetic field a spatial modulation of concurrence along the chain is also obtained.


1991 ◽  
Vol 148 ◽  
pp. 101-102
Author(s):  
M.E. Costa ◽  
P. M. McCulloch ◽  
P. A. Hamilton

We have measured a value of 4±5m--2rad for the rotation measure of the radio pulsar PSR0529-66 in the LMC and, after allowing for the dispersion and rotation measures of our Galaxy on the pulsar's line of sight, we deduce that the magnetic field strength in the LMC is in the range 0 to 5μGauss oriented away from the Sun.


1974 ◽  
Vol 41 (3) ◽  
pp. 822-823 ◽  
Author(s):  
Dj. S. Djukic

The Galerkin approximative technique is used to solve the problem of stagnation in plane flow, the so-called “Hiemenz flow”, of a non-Newtonian power-law fluid in presence of a constant transverse magnetic field. The influence of the magnetic field strength on the wall shear stress is analyzed.


1968 ◽  
Vol 35 ◽  
pp. 201-201
Author(s):  
N. V. Steshenko

1.The fine structure of the proton sunspot group of July 4–8, 1966 was studied on the basis of high-resolution heliograms. The comparison of the orientation between penumbral filaments and the transverse magnetic fields (observed by A.B. Severny and T.T. Tsap) shows that the direction of the filaments coincides in general with that of the magnetic field.2.Measurements of the magnetic fields of smallest pores (1·5″-2″) showed that the pores are always connected with strong magnetic field (in average 1400 gauss), which is localized at the same small area as the pore.3.Magnetic fields of faculae are concentrated in small elements with the dimension not exceeding 1·5″-3″. Magnetic-field strength H|| of about 45% of facular granules is within the limits of photographic measuring errors (approximately 25 gauss). For a quarter of all facular granules the strength H|| is from 25–50 gauss; about 30% of facular granules have H|| > 50 gauss, and sometimes there appear faculae with field strength of about 200 gauss. The magnetic-field strength of facular granules, which are found directly above spots, is 10–20 times less than the field strength of spots. This field is 80–210 gauss only.4.All observational data mentioned above show that the appearance of the fine-structure features in active regions is directly connected with the fine structure of magnetic field of different strength and different orientation. The study of high-resolution heliograms gives additional information about the fine structure of the magnetic field.


2016 ◽  
Vol 34 (3) ◽  
pp. 545-551
Author(s):  
J. Mu ◽  
F.-Y. Li ◽  
Z.-M. Sheng ◽  
J. Zhang

AbstractThe effect of transverse magnetic fields on surface high-harmonic generation in intense laser–solid interactions is investigated. It is shown that the longitudinal motion of electrons can be coupled with the transverse motion via the magnetic fields, which lead to even-order harmonics under normal laser incidence. The dependence of the coupling efficiency and hence even harmonic generation with preplasma scale length and magnetic field strength are presented based upon particle-in-cell simulations. When the magnetic field is parallel to the laser electric field, the spectral intensity of the second harmonic is proportional to the magnetic field strength in a wide range up to 160 MG, while the situation with the magnetic field perpendicular to the laser electric field is more complicated. The second harmonic generation due to the magnetic field also tends to increase with the plasma density scale lengths, which is different from the high-harmonic generation by the oscillating mirror mechanism. With the increase of the laser spot size from a laser wavelength λL, both the magnetic field-induced harmonics and oscillating mirror high harmonics tend to increase first and then become saturated after 3λL. The magnetic field-induced second harmonic may be used to evaluate large self-generated magnetic fields developed near the critical density region and the preplasma conditions.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evgeny D. Filippov ◽  
Sergey S. Makarov ◽  
Konstantin F. Burdonov ◽  
Weipeng Yao ◽  
Guilhem Revet ◽  
...  

AbstractWe analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 10$$^{12}$$ 12 –10$$^{13}$$ 13 W/cm$$^2$$ 2 ) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transverse to its main expansion axis. We find that as early as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression. We also observe that after $$\sim 8$$ ∼ 8  ns, the plasma is being overall shaped in a slab, with the plasma being compressed perpendicularly to the magnetic field, and being extended along the magnetic field direction. This dense slab rapidly expands into vacuum; however, it contains only $$\sim 2\%$$ ∼ 2 % of the total plasma. As a result of the higher density and increased heating of the plasma confined against the laser-irradiated solid target, there is a net enhancement of the total X-ray emissivity induced by the magnetization.


2021 ◽  
Vol 11 (10) ◽  
pp. 4683
Author(s):  
Areum Lee ◽  
Chinnasamy Veerakumar ◽  
Honghyun Cho

This paper discusses the forced convective heat transfer characteristics of water–ethylene glycol (EG)-based Fe3O4 nanofluid and Fe3O4–MWCNT hybrid nanofluid under the effect of a magnetic field. The results indicated that the convective heat transfer coefficient of magnetic nanofluids increased with an increase in the strength of the magnetic field. When the magnetic field strength was varied from 0 to 750 G, the maximum convective heat transfer coefficients were observed for the 0.2 wt% Fe3O4 and 0.1 wt% Fe3O4–MWNCT nanofluids, and the improvements were approximately 2.78% and 3.23%, respectively. The average pressure drops for 0.2 wt% Fe3O4 and 0.2 wt% Fe3O4–MWNCT nanofluids increased by about 4.73% and 5.23%, respectively. Owing to the extensive aggregation of nanoparticles by the external magnetic field, the heat transfer coefficient of the 0.1 wt% Fe3O4–MWNCT hybrid nanofluid was 5% higher than that of the 0.2 wt% Fe3O4 nanofluid. Therefore, the convective heat transfer can be enhanced by the dispersion stability of the nanoparticles and optimization of the magnetic field strength.


Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 120
Author(s):  
Panteleimon Bakalis ◽  
Polycarpos Papadopoulos ◽  
Panayiotis Vafeas

We studied the laminar fully developed ferrofluid flow and heat transfer phenomena of an otherwise magnetic fluid into a vertical annular duct of circular cross-section and uniform temperatures on walls which were subjected to a transverse external magnetic field. A computational algorithm was used, which coupled the continuity, momentum, energy, magnetization and Maxwell’s equations, accompanied by the appropriate conditions, using the continuity–vorticity–pressure (C.V.P.) method and a non-uniform grid. The results were obtained for different values of field strength and particles’ volumetric concentration, wherein the effects of the magnetic field on the ferrofluid flow and the temperature are revealed. It is shown that the axial velocity distribution is highly affected by the field strength and the volumetric concentration, the axial pressure gradient depends almost linearly on the field strength, while the heat transfer significantly increases due to the generated secondary flow.


2018 ◽  
Vol 615 ◽  
pp. A35 ◽  
Author(s):  
De-Fu Bu ◽  
Amin Mosallanezhad

Context. Observations indicate that wind can be generated in hot accretion flow. Wind generated from weakly magnetized accretion flow has been studied. However, the properties of wind generated from strongly magnetized hot accretion flow have not been studied. Aims. In this paper, we study the properties of wind generated from both weakly and strongly magnetized accretion flow. We focus on how the magnetic field strength affects the wind properties. Methods. We solve steady-state two-dimensional magnetohydrodynamic equations of black hole accretion in the presence of a largescale magnetic field. We assume self-similarity in radial direction. The magnetic field is assumed to be evenly symmetric with the equatorial plane. Results. We find that wind exists in both weakly and strongly magnetized accretion flows. When the magnetic field is weak (magnetic pressure is more than two orders of magnitude smaller than gas pressure), wind is driven by gas pressure gradient and centrifugal forces. When the magnetic field is strong (magnetic pressure is slightly smaller than gas pressure), wind is driven by gas pressure gradient and magnetic pressure gradient forces. The power of wind in the strongly magnetized case is just slightly larger than that in the weakly magnetized case. The power of wind lies in a range PW ~ 10−4–10−3 Ṁinc2, with Ṁin and c being mass inflow rate and speed of light, respectively. The possible role of wind in active galactic nuclei feedback is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document