Junction growth in metallic friction: the role of combined stresses and surface contamination

This paper extends earlier work on the adhesion mechanism of friction and considers in particular the growth in area of contact as the tangential force is increased to the point at which gross sliding occurs. The earlier studies assumed that the area of true contact A is the same as that produced under static loading so that A = W / p 0 where W is the normal load and p 0 the plastic yield pressure of the metal. If the junctions have a specific shear strength s , the friction F , that is the force to shear them, will be F = As and the coefficient of friction becomes μ = s / p 0 (Bowden & Tabor 1954). Recent studies, however, show that as the tangential stress is applied the area of true contact increases according to a relation of the type p 2 + αs 2 = p 2 0 where p is the normal and s the tangential stress in the contact region and α an appropriate constant. With thoroughly outgassed metals, junction growth generally proceeds until practically the whole of the geometric area is in contact and coefficients of friction of the order of 50 or more are observed (Bowden & Young 1951). If the interface is contaminated, the stresses transmitted through it cannot exceed the critical shear stress of the interface. The new point developed in this paper based on the work of Courtney-Pratt & Eisner (1957), is that until the shear stress reaches this value junction growth occurs as for clean metals. Beyond this point, however, further junction growth is impossible and gross sliding occurs within the interfacial layer itself. The analysis given here shows that if the interface is only 5% weaker than the bulk metal, junction growth ceases and gross sliding occurs when the coefficient of friction is of the order of unity. This corresponds to the experimental observation that minute amounts of oxygen or air reduce the friction of thoroughly clean metals from extremely high values to values of about 1. In the presence of a lubricant film the transmissible stresses are so small that little junction growth can occur before sliding takes place. The expression for the coefficient of friction now reduces to a form resembling that given by the earlier simpler theory, namely μ = s i / p 0 , where s i is the critical shear stress of the lubricant layer. The present treatment thus incorporates the effect of combined stresses and surface contamination into a more general theory of metallic friction.

2008 ◽  
Vol 24 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Adriana V. Savescu ◽  
Mark L. Latash ◽  
Vladimir M. Zatsiorsky

This article proposes a technique to calculate the coefficient of friction for the fingertip– object interface. Twelve subjects (6 males and 6 females) participated in two experiments. During the first experiment (the imposed displacement method), a 3-D force sensor was moved horizontally while the subjects applied a specified normal force (4 N, 8 N, 12 N) on the surface of a sensor covered with different materials (sandpaper, cotton, rayon, polyester, and silk).Thenormal forceand thetangential force(i.e., the force due to the sensor motion) were recorded. Thecoefficient of friction(µd) was calculated as the ratio between the tangential force and the normal force. In the second experiment (the beginning slip method), a small instrumented object was gripped between the index finger and the thumb, held stationary in the air, and then allowed to drop. The weight (200 g, 500 g, and 1,000 g) and the surface (sandpaper, cotton, rayon, polyester, and silk) in contact with the digits varied across trials. The same sensor as in the first experiment was used to record thenormal force(in a horizontal direction) and thetangential force(in the vertical direction). Theslip force(i.e., the minimal normal force or grip force necessary to prevent slipping) was estimated as the force at the moment when the object just began to slip. The coefficient of friction was calculated as the ratio between the tangential force and the slip force. The results show that (1) the imposed displacement method is reliable; (2) except sandpaper, for all other materials the coefficient of friction did not depend on the normal force; (3) theskin–sandpapercoefficient of friction was the highest µd= 0.96 ± 0.09 (for 4-N normal force) and theskin–rayonrayon coefficient of friction was the smallest µd= 0.36 ± 0.10; (4) no significant difference between the coefficients of friction determined with the imposed displacement method and the beginning slip method was observed. We view the imposed displacement technique as having an advantage as compared with the beginning slip method, which is more cumbersome (e.g., dropped object should be protected from impacts) and prone to subjective errors owing to the uncertainty in determining the instance of the slip initiation (i.e., impeding sliding).


1962 ◽  
Vol 13 (1) ◽  
pp. 17-29 ◽  
Author(s):  
T. H. Lambert ◽  
R. J. Brailey

SummaryThe benefit to be obtained by using an interference fit between the pin and plate in a pin-jointed connection has already been established. An examination of the published results shows that some non-linearity occurs in the mechanism of load transference from the pin to the plate since, except at very high initial interference, doubling the load on the joint more than doubles the maximum shear stress in the plate. An examination of the stress-load relationship shows a distinct discontinuity, the load at which this discontinuity occurs being dependent upon both the initial interference and the coefficient of friction between the pin and the plate. It is shown that the results hitherto published correspond to a coefficient of friction between the pin and the plate of 0.3 and results for lower and higher coefficients are given.


1978 ◽  
Vol 57 (7-8) ◽  
pp. 777-783 ◽  
Author(s):  
Hillar M. Rootare ◽  
John M. Powers ◽  
Robert G. Craig

A sintered hydroxyapatite (HAP) ceramic for use in wear studies was prepared from a commerical tricalcium phosphate. The sintered HAP had physical properties close to those of human enamel. The coefficient of friction and wear of the sintered HAP ceramic as characterized by tangential force, track width, and surface failure data, approximated those of human enamel.


1976 ◽  
Vol 190 (1) ◽  
pp. 477-488 ◽  
Author(s):  
J. Halling

The nature of the interaction between a rigid spherical asperity and an asperity governed by the stress/strain law [Formula: see text] is studied. The interfacial shear stress is defined by f τmax where 0 < f < 1, τ maxbeing the maximum allowable shear stress at the contact. By integrating the total effect of a population of such surface asperities expressions for the total frictional forces, and the total load are derived. The value of the coefficient of friction is thus obtained and the special conditions for perfectly plastic and elastic behaviour are considered. In both cases the friction coefficient is seen to contain a term defined by the deformation and dependent on surface roughness and a term totally defined by f. Using the same model a fatigue type failure criteria is introduced to predict the volume of wear. It is then possible to produce a wear law which is consistent with experience and which includes the relationship between the wear and the coefficient of friction.


2011 ◽  
Vol 8 (64) ◽  
pp. 1574-1583 ◽  
Author(s):  
T. André ◽  
V. Lévesque ◽  
V. Hayward ◽  
P. Lefèvre ◽  
J.-L. Thonnard

The dynamics of fingertip contact manifest themselves in the complex skin movements observed during the transition from a stuck state to a fully developed slip. While investigating this transition, we found that it depended on skin hydration. To quantify this dependency, we asked subjects to slide their index fingertip on a glass surface while keeping the normal component of the interaction force constant with the help of visual feedback. Skin deformation inside the contact region was imaged with an optical apparatus that allowed us to quantify the relative sizes of the slipping and sticking regions. The ratio of the stuck skin area to the total contact area decreased linearly from 1 to 0 when the tangential force component increased from 0 to a maximum. The slope of this relationship was inversely correlated to the normal force component. The skin hydration level dramatically affected the dynamics of the contact encapsulated in the course of evolution from sticking to slipping. The specific effect was to reduce the tendency of a contact to slip, regardless of the variations of the coefficient of friction. Since grips were more unstable under dry skin conditions, our results suggest that the nervous system responds to dry skin by exaggerated grip forces that cannot be simply explained by a change in the coefficient of friction.


2020 ◽  
Vol 35 (5) ◽  
pp. 415-421
Author(s):  
K. Rohm ◽  
M. Amirkhosravi ◽  
I. Manas-Zloczower

Abstract A network of poly(tetrafluoroethylene) (PTFE) microfibers in a thermoplastic polyurethane (TPU) was prepared by melt mixing the TPU with solid PTFE particles. The effect of rotor speed on the fiber dimensions was investigated. Higher shear stress was found to be the critical parameter for producing thinner PTFE fibers, rather than the shear rate imposed by the mixer. Shear stress transfer from the melt to the PTFE crystal results in solid phase plastic deformation, and the efficiency of the deformation depends on the shear stress in the matrix. All of the PTFE fiber/TPU composites show lower coefficients of friction compared with the neat TPU. The magnitude of the coefficient of friction was found to correlate with the interfacial area between PTFE and TPU generated by the microfiber network. However, for macroscale PTFE agglomerates, the reduction in the coefficient of friction is mostly affected by the uneven distribution of PTFE in the bulk and on the molded part surface.


1961 ◽  
Vol 34 (2) ◽  
pp. 461-465 ◽  
Author(s):  
G. M. Bartenev ◽  
V. V. Lavrent'ev

Abstract 1. A method free from the shortcomings of earlier work is proposed for the measurement of the friction of elastomeric materials in the initial moment of shear. 2. From results of measurement of friction of rubber on steel it follows that static friction, determined as the coefficient of friction in the initial moment of slip, is a conventional parameter, since it depends upon the accuracy of measurement of the movement and upon the rate of application of the tangential force. 3. The conventional coefficient of static friction of elastomeric materials is particularly evident at low rates of application of the tangential force, which fact is connected with the nature of dry friction of rubberlike polymers.


Sign in / Sign up

Export Citation Format

Share Document