The two fluid model of the helium film

Motivated by the recent discovery that the thickness of a helium film is independent of its state of superflow, we have analysed the conditions under which the two fluid model is consistent with equilibrium between film and vapour. The experimental result is found to be a natural consequence of the requirements for equilibrium. In addition we find that waves in a moving film should be convected at approximately 1/2(p s lp) u s , where u s is the superfluid velocity. A new criterion for critical velocity is discovered and a new result is obtained for the attenuation of waves.

It is argued that the thermodynamic approach used by Goodstein and Saffman in their theory of thin superfluid helium films is incorrect. Their theory does not explain Keller’s experiment. The value they obtained for the convection velocity of third sound in a film with superfluid flow is consequently unfounded theoretically. Their calculation of third sound attenuation is shown to be incomplete.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
A. K. Das ◽  
P. K. Das ◽  
J. R. Thome

The two fluid model is used to simulate upward gas-liquid bubbly flow through a vertical conduit. Coalescence and breakup of bubbles have been accounted for by embedding the population balance technique in the two fluid model. The simulation enables one to track the axial development of the voidage pattern and the distribution of the bubbles. Thereby it has been possible to propose a new criterion for the transition from bubbly to slug flow regime. The transition criteria depend on (i) the breakage and coalescence frequency, (ii) the bubble volume count below and above the bubble size introduced at the inlet, and (iii) the bubble count histogram. The prediction based on the present criteria exhibits excellent agreement with the experimental data. It has also been possible to simulate the transition from bubbly to dispersed bubbly flow at a high liquid flow rate using the same model.


2021 ◽  
Vol 33 (3) ◽  
pp. 033324
Author(s):  
Alejandro Clausse ◽  
Martín López de Bertodano

2021 ◽  
Vol 33 (3) ◽  
pp. 037116
Author(s):  
Victor L. Mironov

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
R. Ponalagusamy ◽  
Ramakrishna Manchi

AbstractThe present communication presents a theoretical study of blood flow through a stenotic artery with a porous wall comprising Brinkman and Darcy layers. The governing equations describing the flow subjected to the boundary conditions have been solved analytically under the low Reynolds number and mild stenosis assumptions. Some special cases of the problem are also presented mathematically. The significant effects of the rheology of blood and porous wall of the artery on physiological flow quantities have been investigated. The results reveal that the wall shear stress at the stenotic throat increases dramatically for the thinner porous wall (i.e. smaller values of the Brinkman and Darcy regions) and the rate of increase is found to be 18.46% while it decreases for the thicker porous wall (i.e. higher values of the Brinkman and Darcy regions) and the rate of decrease is found to be 10.21%. Further, the streamline pattern in the stenotic region has been plotted and discussed.


Sign in / Sign up

Export Citation Format

Share Document