scholarly journals The Bakerian Lecture,1972 - Insulin, its chemistry and biochemistry

It is fifty years, this year, since insulin was successfully used to treat patients suffering from diabetes. It is thirty years since A. C. Chibnall gave the Bakerian lecture on ‘Amino acid analysis and the structure of proteins’, (1942), including insulin, and ten years since F. G. Young gave the Croonian lecture on ‘Insulin and its action’ (1962). It is difficult not to feel that this is a particularly appropriate moment at which to discuss, once again, insulin, its chemistry and biochemistry, its structure and function. Chibnall did, of course, warn us in 1942 to beware of the ‘hypnotic power of numerology’. The most serious reason for discussing insulin today is not the existence of the recurring anniversaries (other dates are more important in the history of the study of insulin), but the fact that we still do not know how it works in living creatures. Very recently we have acquired a great wealth of new information about the actual arrangement in space of the atoms in insulin molecules in crystals. We can begin to answer many of the questions chemists and biochemists have been asking about the behaviour of insulin for years past. It seems useful to give here some of these answers in the hope that they may guide further experiments towards the complete understanding of the action of insulin that still eludes us.

1974 ◽  
Vol 186 (1084) ◽  
pp. 191-215 ◽  

It is fifty years, this year, since insulin was successfully used to treat patients suffering from diabetes. It is thirty years since A. C. Chibnall gave the Bakerian lecture on ‘Amino acid analysis and the structure of proteins’, (1942), including insulin, and ten years since F. G. Young gave the Croonian lecture on ‘Insulin and its action’ (1962). It is difficult not to feel that this is a particularly appropriate moment at which to discuss, once again, insulin, its chemistry and biochemistry, its structure and function. Chibnall did, of course, warn us in 1942 to beware of the ‘hypnotic power of numerology’. The most serious reason for discussing insulin today is not the existence of the recurring anniversaries (other dates are more important in the history of the study of insulin), but the fact that we still do not know how it works in living creatures. Very recently we have acquired a great wealth of new information about the actual arrangement in space of the atoms in insulin molecules in crystals. We can begin to answer many of the questions chemists and biochemists have been asking about the behaviour of insulin for years past. It seems useful to give here some of these answers in the hope that they may guide further experiments towards the complete understanding of the action of insulin that still eludes us.


2016 ◽  
Vol 56 (4) ◽  
pp. T13-T25 ◽  
Author(s):  
D G Smyth

Many important fields of research had a humble origin. In the distant past, A J P Martin’s discovery that amino acids could be separated by paper chromatography and Moore and Stein’s use of columns for quantitative amino acid analysis provided the first steps towards the determination of structure in complex biologically active molecules. They opened the door to reveal the essential relationship that exists between structure and function. In molecular endocrinology, for example, striking advances have been made by chemists with their expertise in the identification of structure working with biologists who contributed valuable knowledge and experience. Advantage was gained from the convergence of different background, and it is notable that the whole is greater than the sum. In the determination of structure, it may be recalled that four of the world’s great pioneers (Archibald Martin, Rodney Porter, Fred Sanger and Vincent du Vigneaud) were acknowledged for their fundamental contributions when individually they were awarded the Nobel Prize. They foresaw that the identification of structure would prove of outstanding importance in the future. Indeed, study of the structures of β-endorphin and enkephalin and the different forms of opiate activity they engender has led to a transformation in our understanding of chemical transmission in the brain.


1997 ◽  
Vol 75 (6) ◽  
pp. 687-696 ◽  
Author(s):  
Tamo Fukamizo ◽  
Ryszard Brzezinski

Novel information on the structure and function of chitosanase, which hydrolyzes the beta -1,4-glycosidic linkage of chitosan, has accumulated in recent years. The cloning of the chitosanase gene from Streptomyces sp. strain N174 and the establishment of an efficient expression system using Streptomyces lividans TK24 have contributed to these advances. Amino acid sequence comparisons of the chitosanases that have been sequenced to date revealed a significant homology in the N-terminal module. From energy minimization based on the X-ray crystal structure of Streptomyces sp. strain N174 chitosanase, the substrate binding cleft of this enzyme was estimated to be composed of six monosaccharide binding subsites. The hydrolytic reaction takes place at the center of the binding cleft with an inverting mechanism. Site-directed mutagenesis of the carboxylic amino acid residues that are conserved revealed that Glu-22 and Asp-40 are the catalytic residues. The tryptophan residues in the chitosanase do not participate directly in the substrate binding but stabilize the protein structure by interacting with hydrophobic and carboxylic side chains of the other amino acid residues. Structural and functional similarities were found between chitosanase, barley chitinase, bacteriophage T4 lysozyme, and goose egg white lysozyme, even though these proteins share no sequence similarities. This information can be helpful for the design of new chitinolytic enzymes that can be applied to carbohydrate engineering, biological control of phytopathogens, and other fields including chitinous polysaccharide degradation. Key words: chitosanase, amino acid sequence, overexpression system, reaction mechanism, site-directed mutagenesis.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
J. Santiago Mejia ◽  
Erik N. Arthun ◽  
Richard G. Titus

One approach to identify epitopes that could be used in the design of vaccines to control several arthropod-borne diseases simultaneously is to look for common structural features in the secretome of the pathogens that cause them. Using a novel bioinformatics technique, cysteine-abundance and distribution analysis, we found that many different proteins secreted by several arthropod-borne pathogens, includingPlasmodium falciparum, Borrelia burgdorferi, and eight species of Proteobacteria, are devoid of cysteine residues. The identification of three cysteine-abundance and distribution patterns in several families of proteins secreted by pathogenic and nonpathogenic Proteobacteria, and not found when the amino acid analyzed was tryptophan, provides evidence of forces restricting the content of cysteine residues in microbial proteins during evolution. We discuss these findings in the context of protein structure and function, antigenicity and immunogenicity, and host-parasite relationships.


1996 ◽  
Vol 135 (3) ◽  
pp. 673-687 ◽  
Author(s):  
A J Kreuz ◽  
A Simcox ◽  
D Maughan

Drosophila indirect flight muscle (IFM) contains two different types of tropomyosin: a standard 284-amino acid muscle tropomyosin, Ifm-TmI, encoded by the TmI gene, and two > 400 amino acid tropomyosins, TnH-33 and TnH-34, encoded by TmII. The two IFM-specific TnH isoforms are unique tropomyosins with a COOH-terminal extension of approximately 200 residues which is hydrophobic and rich in prolines. Previous analysis of a hypomorphic TmI mutant, Ifm(3)3, demonstrated that Ifm-TmI is necessary for proper myofibrillar assembly, but no null TmI mutant or TmII mutant which affects the TnH isoforms have been reported. In the current report, we show that four flightless mutants (Warmke et al., 1989) are alleles of TmI, and characterize a deficiency which deletes both TmI and TmII. We find that haploidy of TmI causes myofibrillar disruptions and flightless behavior, but that haploidy of TmII causes neither. Single fiber mechanics demonstrates that power output is much lower in the TmI haploid line (32% of wild-type) than in the TmII haploid line (73% of wild-type). In myofibers nearly depleted of Ifm-TmI, net power output is virtually abolished (< 1% of wild-type) despite the presence of an organized fibrillar core (approximately 20% of wild-type). The results suggest Ifm-TmI (the standard tropomyosin) plays a key role in fiber structure, power production, and flight, with reduced Ifm-TmI expression producing corresponding changes of IFM structure and function. In contrast, reduced expression of the TnH isoforms has an unexpectedly mild effect on IFM structure and function.


2008 ◽  
Vol 52 (4) ◽  
pp. 216-223 ◽  
Author(s):  
Takuya Yano ◽  
Eri Nobusawa ◽  
Alexander Nagy ◽  
Setsuko Nakajima ◽  
Katsuhisa Nakajima

2017 ◽  
Author(s):  
Charley J. Hubbard ◽  
Marcus T. Brock ◽  
Linda T.A. van Diepen ◽  
Loïs Maignien ◽  
Brent E. Ewers ◽  
...  

AbstractPlants alter chemical and physical properties of soil, and thereby influence rhizosphere microbial community structure. The structure of microbial communities may in turn affect plant performance. Yet, outside of simple systems with pairwise interacting partners, the plant genetic pathways that influence microbial community structure remain largely unknown, as are the performance feedbacks of microbial communities selected by the host plant genotype. We investigated the role of the plant circadian clock in shaping rhizosphere community structure and function. We performed 16S rRNA gene sequencing to characterize rhizosphere bacterial communities of Arabidopsis thaliana between day and night time points, and tested for differences in community structure between wild-type (Ws) vs. clock mutant (toc1-21, ztl-30) genotypes. We then characterized microbial community function, by growing wild-type plants in soils with an overstory history of Ws, toc1-21 or ztl-30 and measuring plant performance. We observed that rhizosphere community structure varied between day and night time points, and clock misfunction significantly altered rhizosphere communities. Finally, wild-type plants germinated earlier and were larger when inoculated with soils having an overstory history of wild-type in comparison to clock mutant genotypes. Our findings suggest the circadian clock of the plant host influences rhizosphere community structure and function.


1971 ◽  
Vol 123 (1) ◽  
pp. 57-67 ◽  
Author(s):  
P. R. Carnegie

Myelin from the central nervous system contains an unusual basic protein, which can induce experimental autoimmune encephalomyelitis. The basic protein from human brain was digested with trypsin and other enzymes and the sequence of the 170 amino acids was determined. The localization of the encephalitogenic determinants was described. Possible roles for the protein in the structure and function of myelin are discussed.


2003 ◽  
Vol 77 (22) ◽  
pp. 12310-12318 ◽  
Author(s):  
Kevin J. Kunstman ◽  
Bridget Puffer ◽  
Bette T. Korber ◽  
Carla Kuiken ◽  
Una R. Smith ◽  
...  

ABSTRACT A chemokine receptor from the seven-transmembrane-domain G-protein-coupled receptor superfamily is an essential coreceptor for the cellular entry of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) strains. To investigate nonhuman primate CC-chemokine receptor 5 (CCR5) homologue structure and function, we amplified CCR5 DNA sequences from peripheral blood cells obtained from 24 representative species and subspecies of the primate suborders Prosimii (family Lemuridae) and Anthropoidea (families Cebidae, Callitrichidae, Cercopithecidae, Hylobatidae, and Pongidae) by PCR with primers flanking the coding region of the gene. Full-length CCR5 was inserted into pCDNA3.1, and multiple clones were sequenced to permit discrimination of both alleles. Compared to the human CCR5 sequence, the CCR5 sequences of the Lemuridae, Cebidae, and Cercopithecidae shared 87, 91 to 92, and 96 to 99% amino acid sequence homology, respectively. Amino acid substitutions tended to cluster in the amino and carboxy termini, the first transmembrane domain, and the second extracellular loop, with a pattern of species-specific changes that characterized CCR5 homologues from primates within a given family. At variance with humans, all primate species examined from the suborder Anthropoidea had amino acid substitutions at positions 13 (N to D) and 129 (V to I); the former change is critical for CD4-independent binding of SIV to CCR5. Within the Cebidae, Cercopithecidae, and Pongidae (including humans), CCR5 nucleotide similarities were 95.2 to 97.4, 98.0 to 99.5, and 98.3 to 99.3%, respectively. Despite this low genetic diversity, the phylogeny of the selected primate CCR5 homologue sequences agrees with present primate systematics, apart from some intermingling of species of the Cebidae and Cercopithecidae. Constructed HOS.CD4 cell lines expressing the entire CCR5 homologue protein from each of the Anthropoidea species and subspecies were tested for their ability to support HIV-1 and SIV entry and membrane fusion. Other than that of Cercopithecus pygerythrus, all CCR5 homologues tested were able to support both SIV and HIV-1 entry. Our results suggest that the shared structure and function of primate CCR5 homologue proteins would not impede the movement of primate immunodeficiency viruses between species.


Sign in / Sign up

Export Citation Format

Share Document