The application of resonance enhanced multiphoton ionization to the detection of hydrogen atoms during the oscillatory combustion of hydrogen

The relative concentrations of hydrogen atoms were measured during the oscillatory ignition of hydrogen in a well stirred flow reactor. Comparisons were made with the experimental concentration—time profiles of the hydroxyl radical obtained previously under similar experimental conditions. The predicted concentration profiles obtained from numerical analysis of a thermokinetic model were also compared with the experimental results. Experiments were performed in a 600 cm 3 Pyrex glass, jet-stirred reactor with the reactants, 2H 2 + O 2 , at a total pressure of 16 Torr ( ca . 2132.8 Pa) and at a vessel temperature of 753 K. The mean residence time was 1.2 s. Oscillatory ignition was established at a period of 3 s in which high radical concentrations were attained and in which the temperature rise was almost adiabatic. The concentration-time profile of hydrogen atoms was obtained by a resonance enhanced multiphoton ionization (rempi) which was induced by a laser pulse at energies in the vicinity of 364 nm, with ion collection at a stainless steel probe inserted into the reactor. Supplementary studies were made to characterize the signals and to identify effects of the probe within the reaction volume. A measurement of the relative concentrations of hydrogen atoms was obtained from an integration of the area of the rempi spectrum determined over the laser wavelength range 363.8-364.6 nm. The spectrum was measured at successive times in the oscillatory cycle by imposing a variable delay on the laser firing signal. The results show that, during oscillatory ignition, the maximum concentration of hydrogen atoms was reached and a sharp decay was already well advanced before that of the hydroxyl radicals was attained. The numerical analysis was in very good quantitative accord with this experimental result. The phase difference of the cyclic variation in the H atoms relative to that of OH radicals is a key feature of the kinetic mechanisms which control the oscillatory oxidation of hydrogen.

Experimental studies of the phase relations between H atoms, OH radicals and reactant temperature during the gas-phase, oscillatory combustion of hydrogen in a well-stirred flow reactor are reported. Absolute concentrations of the OH radical and the reactant temperature were measured in absorption from the vibrational-rotational structure of the laser-induced, electronically excited, OH spectrum . Relative concentrations of H atoms were obtained by multiphoton ionization, also induced by a laser. The hydrogen atoms reached their maximum concentration first during the oscillatory combustion, rising to a sharp peak followed by a rapid decay within several milliseconds. The OH radicals reached their maximum concentration about 1 ms after the H atoms. The maximum of the reactant temperature was in phase with the hydroxyl radicals. Experimental and numerical studies of the interaction that occurs between oscillations in a pair of coupled reactors are also presented.


1983 ◽  
Vol 38 (8) ◽  
pp. 896-908 ◽  
Author(s):  
K. Wörsdorfer ◽  
B. Reimann ◽  
P. Potzinger

Abstract The reactions of hydrogen atoms with silane and the methylated silanes - with the exception of tetramethylsilane -have been investigated in a fast flow reactor. Under our experimental conditions hydrogen abstraction from the Si-H bond is followed by combination of hydrogen atoms with the corresponding silyl radicals. The molecules formed in this way are activated by about 375 kJ/mol of vibrational energy. Two decomposition channels have been unequivocally identified, namely the elimination of molecular hydrogen and of methane, both with concomittant formation of the respective silylenes. In a subsequent step, silylene inserts into the substrate under formation of disilanes. With increasing degree of methylation. stabilization of the activated molecule competes with decomposition and dominates the kinetics in the case of trimethylsilane. With methyl -and dimethyl-silane, methyl radicals are observed as an additional reaction product. On the basis of RRKM calculations it is unlikely that they originate from a direct decomposition of the activated molecules.Absolute values for the room temperature rate constants of the abstraction reactions are given; for H+CH3SiH3, Arrhenius parameters have been determined.


2018 ◽  
Vol 612 ◽  
pp. A83 ◽  
Author(s):  
D. Qasim ◽  
K.-J. Chuang ◽  
G. Fedoseev ◽  
S. Ioppolo ◽  
A. C. A. Boogert ◽  
...  

Context. The formation of methanol (CH3OH) on icy grain mantles during the star formation cycle is mainly associated with the CO freeze-out stage. Yet there are reasons to believe that CH3OH also can form at an earlier period of interstellar ice evolution in CO-poor and H2O-rich ices. Aims. This work focuses on CH3OH formation in a H2O-rich interstellar ice environment following the OH-mediated H-abstraction in the reaction, CH4 + OH. Experimental conditions are systematically varied to constrain the CH3OH formation yield at astronomically relevant temperatures. Methods. CH4, O2, and hydrogen atoms are co–deposited in an ultrahigh vacuum chamber at 10–20 K. OH radicals are generated by the H + O2 surface reaction. Temperature programmed desorption – quadrupole mass spectrometry (TPD–QMS) is used to characterize CH3OH formation, and is complemented with reflection absorption infrared spectroscopy (RAIRS) for CH3OH characterization and quantitation. Results. CH3OH formation is shown to be possible by the sequential surface reaction chain, CH4 + OH → CH3 + H2O and CH3 + OH → CH3OH at 10–20 K. This reaction is enhanced by tunneling, as noted in a recent theoretical investigation Lamberts et al. (2017, A&A, 599, A132). The CH3OH formation yield via the CH4 + OH route versus the CO + H route is approximately 20 times smaller for the laboratory settings studied. The astronomical relevance of the new formation channel investigated here is discussed.


2021 ◽  
Vol 7 (13) ◽  
pp. eabe2952
Author(s):  
Houssni Lamkaddam ◽  
Josef Dommen ◽  
Ananth Ranjithkumar ◽  
Hamish Gordon ◽  
Günther Wehrle ◽  
...  

Aerosols still present the largest uncertainty in estimating anthropogenic radiative forcing. Cloud processing is potentially important for secondary organic aerosol (SOA) formation, a major aerosol component: however, laboratory experiments fail to mimic this process under atmospherically relevant conditions. We developed a wetted-wall flow reactor to simulate aqueous-phase processing of isoprene oxidation products (iOP) in cloud droplets. We find that 50 to 70% (in moles) of iOP partition into the aqueous cloud phase, where they rapidly react with OH radicals, producing SOA with a molar yield of 0.45 after cloud droplet evaporation. Integrating our experimental results into a global model, we show that clouds effectively boost the amount of SOA. We conclude that, on a global scale, cloud processing of iOP produces 6.9 Tg of SOA per year or approximately 20% of the total biogenic SOA burden and is the main source of SOA in the mid-troposphere (4 to 6 km).


1988 ◽  
Vol 10 (1) ◽  
pp. 35-43 ◽  
Author(s):  
B. Wolff ◽  
H. Rottke ◽  
D. Feldmann ◽  
K. H. Welge

2014 ◽  
Vol 578-579 ◽  
pp. 936-939 ◽  
Author(s):  
Qian Qian Sun ◽  
Yun Zou ◽  
Qiang Wang

Nonlinear numerical analysis of the stress performance of SRC-RC transfer columns was carried out in this paper with the finite element software of ABAQUS. Compered with the experimental result , numerical analysis result are found to be reasonable.Then the influence of factors such as extension length of shape steel , area ratio of shape steel and axial-load ratio were contrastively analyzed . The results show that extension length of shape steel and the area ratio of shape steel have a greater influence on the bearing capacity and the hysteretic performance of transfer column ,but axial-load ratio has less influence .


2019 ◽  
Author(s):  
Robert Pollice

The rapid development of analytical methods in recent decades has resulted in a wide range of readily available and accurate reaction-monitoring techniques, which allow for easy determination of high-quality concentration-time data of chemical reactions. However, while the acquisition of kinetic data has become routine in the development of new chemical reactions and the study of their mechanisms, not all the information contained therein is utilized because of a lack of suitable analysis tools which unnecessarily complicates mechanistic studies. Herein, we report on a general method to analyze a single concentration-time profile of chemical reactions and extract information regarding the reaction order with respect to substrates, the presence of multiple kinetic regimes, and the presence of kinetic complexities, such as catalyst deactivation, product inhibition, and substrate decomposition.<br>


Author(s):  
Armin Sadighi ◽  
Lorenzo Leggio ◽  
Fatemeh Akhlaghi

Abstract Aims A physiologically based pharmacokinetic (PBPK) modeling approach was used to simulate the concentration-time profile of ethanol (EtOH) in stomach, duodenum, plasma and other tissues upon consumption of beer and whiskey under fasted and fed conditions. Methods A full PBPK model was developed for EtOH using the advanced dissolution, absorption and metabolism (ADAM) model fully integrated into the Simcyp Simulator® 15 (Simcyp Ltd., Sheffield, UK). The prediction performance of the developed model was verified and the EtOH concentration-time profile in different organs was predicted. Results Simcyp simulation showed ≤ 2-fold difference in values of EtOH area under the concentration-time curve (AUC) in stomach and duodenum as compared to the observed values. Moreover, the simulated EtOH maximum concentration (Cmax), time to reach Cmax (Tmax) and AUC in plasma were comparable to the observed values. We showed that liver is exposed to the highest EtOH concentration, faster than other organs (Cmax = 839.50 mg/L and Tmax = 0.53 h), while brain exposure of EtOH (AUC = 1139.43 mg·h/L) is the highest among all other organs. Sensitivity analyses (SAs) showed direct proportion of EtOH rate and extent of absorption with administered EtOH dose and inverse relationship with gastric emptying time (GE) and steady-state volume of distribution (Vss). Conclusions The current PBPK model approach might help with designing in vitro experiments in the area of alcohol organ damage or alcohol-drug interaction studies.


2010 ◽  
Vol 10 (3) ◽  
pp. 6447-6484 ◽  
Author(s):  
T. Berndt ◽  
F. Stratmann ◽  
M. Sipilä ◽  
J. Vanhanen ◽  
T. Petäjä ◽  
...  

Abstract. Nucleation experiments starting from the reaction of OH radicals with SO2 have been performed in the IfT-LFT flow tube under atmospheric conditions at 293±0.5 K for a relative humidity of 13–61%. The presence of different additives (H2, CO, 1,3,5-trimethylbenzene) for adjusting the OH radical concentration and resulting OH levels in the range (4–300)·105 molecule cm−3 did not influence the nucleation process itself. The number of detected particles as well as the threshold H2SO4 concentration needed for nucleation was found to be strongly dependent on the counting efficiency of the used counting devices. High-sensitivity particle counters allowed the measurement of freshly nucleated particles with diameters down to about 1.5 nm. A parameterization of the experimental data was developed using power law equations for H2SO4 and H2O vapour. The exponent for H2SO4 from different measurement series was in the range of 1.7–2.1 being in good agreement with those arising from analysis of nucleation events in the atmosphere. For increasing relative humidity, an increase of the particle number was observed. The exponent for H2O vapour was found to be 3.1 representing a first estimate. Addition of 1.2·1011 molecule cm−3 or 1.2·1012 molecule cm−3 of NH3 (range of atmospheric NH3 peak concentrations) revealed that NH3 has a measureable, promoting effect on the nucleation rate under these conditions. The promoting effect was found to be more pronounced for relatively dry conditions. NH3 showed a contribution to particle growth. Adding the amine tert-butylamine instead of NH3, the enhancing impact for nucleation and particle growth appears to be stronger.


2017 ◽  
Author(s):  
Andrew Lambe ◽  
Paola Massoli ◽  
Xuan Zhang ◽  
Manjula Canagaratna ◽  
John Nowak ◽  
...  

Abstract. Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent SOA formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NO at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O→ 2NO, followed by the reaction NO + O3 → NO2+ O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3−) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.


Sign in / Sign up

Export Citation Format

Share Document