A model of sonoluminescence

A bubble of air, trapped at the centre of a spherical container of water on the surface of which spherical sound waves are maintained by transducers, may emit light, a phenomenon known as sonoluminescence. The surface of the bubble expands and contracts in obedience to the Rayleigh–Lamb equation, which requires knowledge of the gas pressure on the surface of the bubble. In many investigations of bubble pulsations, it is assumed that the air in the bubble moves adiabatically. To understand sonoluminescence, however, it is necessary to allow for the possibility that shocks are generated within the bubble. We couple the Rayleigh–Lamb equation governing the bubble radius to Euler’s equations governing the motion of air in the bubble, and solve the two equations simultaneously. The air is modelled by a van der Waals gas. Results are presented for a number of slightly different conditions of excitation, but in which the response of the system is widely different. If the frequency of the sound is high, the gas in the bubble moves adiabatically and no light is emitted. As the frequency is reduced (for the same ambient bubble radius and driving pressure), the incoming bubble surface acts as a piston that generates an ingoing shock wave that passes through the centre of the bubble, and then, when it strikes the bubble surface, halts and reverses its inward motion; a sequence of such inwardly and outwardly moving shocks occur. The shock waves generate such high temperatures that the air near the centre of the bubble is almost completely ionized, and emits light, which we attribute to bremmstrahlung. The light created by the second inwardly moving shock exceeds that created by the first but, as the frequency of the sound is further reduced, the energy from the first shock rises, and the overall luminosity of the bubble increases. When the sound frequency is further reduced, two shocks are launched successively by the inward moving bubble surface, the second colliding with the first after it has passed through the centre of symmetry but before it can collide with the bubble surface. Even higher temperatures are reached and the luminosity of the bubble continues to increase with decreasing frequency. Details of these solutions are presented, and estimates are made of the luminosity of the bubble in different conditions of excitation. Two other families of solutions are presented. In one, the frequency and ambient bubble radius are fixed and the driving amplitude is varied. In the other, the frequency and driving amplitude are fixed and the radius is varied. The effects of changing only the molecular weight of the trapped gas is also examined.

2004 ◽  
Vol 13 (09) ◽  
pp. 1955-1972 ◽  
Author(s):  
SANTABRATA DAS ◽  
SANDIP K. CHAKRABARTI

Low angular momentum accretion flows can have standing and oscillating shock waves. We study the region of the parameter space in which multiple sonic points occur in viscous flows in presence of various cooling effects such as bremsstrahlung and Comptonization. We also quantify the parameter space in which shocks are steady or oscillating. We find that cooling induces effects opposite to heating by viscosity even in modifying the topology of the solutions, though one can never be exactly balanced by the other due to their dissimilar dependence on dynamic and thermodynamic parameters. We show that beyond a critical value of cooling, the flow ceases to contain a shock wave.


2015 ◽  
Vol 5 (5) ◽  
pp. 20150048 ◽  
Author(s):  
Qianxi Wang ◽  
Wenke Liu ◽  
A. M. Zhang ◽  
Yi Sui

A bubble initiated near a rigid boundary may be almost in contact with the boundary because of its expansion and migration to the boundary, where a thin layer of water forms between the bubble and the boundary thereafter. This phenomenon is modelled using the weakly compressible theory coupled with the boundary integral method. The wall effects are modelled using the imaging method. The numerical instabilities caused by the near contact of the bubble surface with the boundary are handled by removing a thin layer of water between them and joining the bubble surface with its image to the boundary. Our computations correlate well with experiments for both the first and second cycles of oscillation. The time history of the energy of a bubble system follows a step function, reducing rapidly and significantly because of emission of shock waves at inception of a bubble and at the end of collapse but remaining approximately constant for the rest of the time. The bubble starts being in near contact with the boundary during the first cycle of oscillation when the dimensionless stand-off distance γ = s / R m < 1, where s is the distance of the initial bubble centre from the boundary and R m is the maximum bubble radius. This leads to (i) the direct impact of a high-speed liquid jet on the boundary once it penetrates through the bubble, (ii) the direct contact of the bubble at high temperature and high pressure with the boundary, and (iii) the direct impingement of shock waves on the boundary once emitted. These phenomena have clear potential to damage the boundary, which are believed to be part of the mechanisms of cavitation damage.


2015 ◽  
Vol 5 (5) ◽  
pp. 20150019 ◽  
Author(s):  
Siew-Wan Ohl ◽  
Evert Klaseboer ◽  
Boo Cheong Khoo

The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed ‘acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics–bubble interactions, with a focus on shock wave–bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the ‘resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave–bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.


2001 ◽  
Vol 448 ◽  
pp. 147-174 ◽  
Author(s):  
G. BEN-DOR ◽  
E. I. VASILIEV ◽  
T. ELPERIN ◽  
A. CHPOUN

The interaction of two conical shock waves, one converging and straight and the other diverging and curvilinear, in an axisymmetric flow was investigated both experimentally and numerically. A double-loop hysteresis was discovered in the course of the experimental investigation. The double-loop hysteresis consisted of a major one, associated with the interaction between the boundary layer and the wave configuration, and a minor one, associated with the dual-solution phenomenon, which is known to be non-viscous-dependent. The minor hysteresis loop was found to be an internal hysteresis loop of the major one. As expected the numerical Euler calculations failed to detect the viscous-dependent major hysteresis loop but did succeed in obtaining the non-viscous-dependent minor (internal) hysteresis loop. In addition, multiple hysteresis loops, associated with the interaction between the shock wave configuration and the edge of the curvilinear mobile cone were also observed. The non-viscous minor hysteresis loop involved different overall shock wave reflection configurations, and the other hysteresis loops involved the same shock wave reflection configuration but different flow patterns.


Author(s):  
Yoshinori Jinbo ◽  
Hiroyuki Takahira

The present study deals with the collapse of nonspherical bubbles in a compressible liquid by taking the thermal diffusion into account. The ghost fluid method (GFM) is modified so as to consider the thermal diffusion through the bubble surface. The boundary condition for the temperature continuity at the interface is discussed for determining the values of the ghost fluids. The improved GFM is applied to the collapse of a single spherical bubble. The present results are in good agreement with those obtained from the equation of motion for a single bubble (Keller equation) coupling with the energy equation. The improved multigrid GFM is also applied to the interaction of a gas bubble with a strong shock wave. The non-spherical bubble collapse is simulated successfully by taking the thermal diffusion into account. The thermal boundary layers both inside and outside the bubble are captured with the present method although the thermal boundary layer in liquid is very thin. The bubble collapse due to the incident shock wave accompanies the formation of the liquid jets and shock waves leading to the high temperature field. The influence of thermal diffusion becomes more prominent when the initial bubble radius is small. It is shown that a large amount of heat outflows from the interior of the bubble to the liquid when the liquid jet hits the downstream surface of the bubble and the bubble rebounds. The increased thermal diffusion causes the decrease of the internal pressure and temperature in the bubble leading to more violent collapse.


1968 ◽  
Vol 46 (8) ◽  
pp. 935-937
Author(s):  
David Davies

The behavior of shock waves in the atmosphere is governed by eight independent equations. Four of these are the well-known Rankine–Hugoniot equations which express mass and momentum relationships. Two of the other equations, which both involve a Coriolis term, serve to describe the angular momentum relationships. The last two relate to development. All eight equations are derived from Newton's Second Law of Motion and the equation of conservation of mass.


2018 ◽  
Vol 13 (3) ◽  
pp. 23-28 ◽  
Author(s):  
D.Yu. Toporkov

Collapse of a weakly-spherical cavitation bubble in acetone and tetradecane is studied. The bubble radius is 500 μm, the temperature and pressure of the liquid are 293 K and 15 bar in the case of acetone and 663 K and 50 bar in the case of tetradecane. A hydrodynamic model is used in which the compressibility of the liquid, the nonstationary thermal conduction of the vapor and the liquid, and nonequilibrium heat and mass transfer on the bubble surface, as well as imperfection of the vapor, are considered. Realistic wide-range equations of state are used. It has been found that converging shock waves appear in the bubbles during its collapses in acetone and tetradecane. The maximum values of the thermodynamic parameters are comparable. A comparison of the evolution of the bubble sphericity perturbation and motion of the shock wave in the bubble allows suggesting that tetradecane is a more favorable medium for the realization of a near-spherical cumulation in a bubble than acetone.


1991 ◽  
Vol 9 (4) ◽  
pp. 795-816 ◽  
Author(s):  
Kazuko Inoue ◽  
Tomio Ariyasu

The possibility of compressing the cryogenic hollow pellet of inertial confinement nuclear fusion with multiple adiabatic shock waves is discussed, on the basis of the estimation of the properties of a high-density deuterium plasma (1024−1027 cm−3, 10−1−104 eV), such as the velocity and the attenuation constant of the adiabatic sound wave, the width of the shock wave, and the surface tension.It is found that in the course of compression the wavelength of the adiabatic sound wave and the width of the weak shock wave sometimes become comparable to or exceed the fuel shell width of the pellet, and that the surface tension is negative. These results show that it is rather difficult to compress stably the hollow pellet with successive weak shock waves.


Author(s):  
M.A. Mogilevsky ◽  
L.S. Bushnev

Single crystals of Al were loaded by 15 to 40 GPa shock waves at 77 K with a pulse duration of 1.0 to 0.5 μs and a residual deformation of ∼1%. The analysis of deformation structure peculiarities allows the deformation history to be re-established.After a 20 to 40 GPa loading the dislocation density in the recovered samples was about 1010 cm-2. By measuring the thickness of the 40 GPa shock front in Al, a plastic deformation velocity of 1.07 x 108 s-1 is obtained, from where the moving dislocation density at the front is 7 x 1010 cm-2. A very small part of dislocations moves during the whole time of compression, i.e. a total dislocation density at the front must be in excess of this value by one or two orders. Consequently, due to extremely high stresses, at the front there exists a very unstable structure which is rearranged later with a noticeable decrease in dislocation density.


1970 ◽  
Vol 24 (01/02) ◽  
pp. 026-032 ◽  
Author(s):  
N. A Marsh

SummaryMolecular exclusion chromatography was performed on samples of urine from normal and aminonucleoside nephrotic rats. Normal urine contained 2 peaks of urokinase activity, one having a molecular weight of 22,000 and the other around 200,000. Nephrotic urine contained three peaks of activity with MW’s 126,000, 60,000 and 30,000. Plasma activator determined from euglobulin precipitate had a MW. in excess of 200,000. The results indicate that in the normal animal, plasma plasminogen activator does not escape into the urine in substantial quantities but under the conditions of extreme proteinuria there may be some loss through the kidney. The alteration in urokinase output in nephrotic animals indicates a greatly disordered renal fibrinolytic enzyme system.The findings of this study largely support the hypothesis that plasma plasminogen activator of renal origin and urinary plasminogen activator (urokinase) are different molecular species.


Sign in / Sign up

Export Citation Format

Share Document