Three-dimensional time-harmonic elastodynamic Green ’ s functions for anisotropic solids

A method based on the Radon transform is presented to determine the displacement field in a general anisotropic solid due to the application of a time-harmonic point force. The Radon transform reduces the system of coupled partial differential equations for the displacement components to a system of coupled ordinary differential equations. This system is reduced to an uncoupled form by the use of properties of eigenvectors and eigenvalues. The resulting simplified system can be solved easily. A back transformation to the original coordinate system and a subsequent application of the inverse Radon transform yields the displacements as a summation of a regular elastodynamic term and a singular static term. Both terms are integrals over a unit sphere. For the regular dynamic term, the surface integration can be evaluated numerically without difficulty. For the singular static term, the surface integral has been reduced to a line integral over half a unit circle. Reductions to the cases of isotropy and transverse isotropy have been worked out in detail. Examples illustrate applications of the method.

The Radon transform of a function is defined as an integration over planes whose normals vary over the entire unit sphere. The space is actually covered twice because the distance of the plane from the origin is allowed to be positive or negative. The usual inverse transform requires knowledge of the transform evaluated over the entire sphere. However, we shall show that only the transform over a hemisphere, which can consist of disconnected parts, is required to reconstruct the original function . Thus the redundancy of the double-covering is removed and only one-half of the transform is needed to recover the original function. In essence we have introduced optical coordinates. We then consider function f(x) obtained by applying the inverse Radon transform to an arbitrary function which has the same arguments as the Radon transform but is not, in general, a Radon transform. On applying the Radon transform to f(x) we find that only part of the arbitrary function, to which the inverse was applied, is reproduced. Thus the Radon transform has a left inverse but not a right inverse. However, by restricting the range of variables in the transform space, a right and left inverse can be obtained which are the same. Finally, we give Parseval’s theorem in terms of the refined Radon transform. Though we modify the older proofs for obtaining the Radon transform and its inverse, for the sake of a self-contained paper we also use new elementary proofs based on relations which we have derived between one­-dimensional and three-dimensional delta functions. We expect that our result will have consequences in tomography and other applications. We ourselves will use the result to obtain the exact fields for the scalar three-dimensional wave equation and Maxwell’s equations from fields in the wave zone, and, conversely, fields in the wave zone from the exact causal fields. In fact, the principal reason for our writing the present paper is to cast the Radon transform and its inverse in a form suitable for these applications. Though we shall prove our result for the three-dimensional case only, the proof for the general case can be inferred from our proof.


Author(s):  
Yu Liu

The image obtained in a transmission electron microscope is the two-dimensional projection of a three-dimensional (3D) object. The 3D reconstruction of the object can be calculated from a series of projections by back-projection, but this algorithm assumes that the image is linearly related to a line integral of the object function. However, there are two kinds of contrast in electron microscopy, scattering and phase contrast, of which only the latter is linear with the optical density (OD) in the micrograph. Therefore the OD can be used as a measure of the projection only for thin specimens where phase contrast dominates the image. For thick specimens, where scattering contrast predominates, an exponential absorption law holds, and a logarithm of OD must be used. However, for large thicknesses, the simple exponential law might break down due to multiple and inelastic scattering.


2019 ◽  
Vol 6 (3) ◽  
pp. 233-242 ◽  
Author(s):  
Sohail Nadeem ◽  
Muhammad Naveed Khan ◽  
Noor Muhammad ◽  
Shafiq Ahmad

Abstract The present investigation concentrates on three dimensional unsteady forced bio-convection flow of a viscous fluid. An incompressible flow of a micropolar nanofluid encloses micro-organisms past an exponentially stretching sheet with magnetic field is analyzed. By employing convenient transformation the partial differential equations are converted into the ordinary differential equations which are non-linear. By using shooting method to solved these equations numerically. The influence of the determining parameters on the velocity, temperature, micro-rotation, nanoparticle volume fraction, microorganism are incorporated. The skin friction, heat transfer rate, and the microorganism rate are analyzed. The results depicts that the value of the wall shear stress and Nusselt number are declined while an enhancement take place in the microorganism number. The slip parameters increases the velocity, thermal energy, and microorganism number consequentially. The present investigation are important in improving achievement of microbial fuel cells.


Author(s):  
Ge Kai ◽  
Wei Zhang

In this paper, we establish a dynamic model of the hyper-chaotic finance system which is composed of four sub-blocks: production, money, stock and labor force. We use four first-order differential equations to describe the time variations of four state variables which are the interest rate, the investment demand, the price exponent and the average profit margin. The hyper-chaotic finance system has simplified the system of four dimensional autonomous differential equations. According to four dimensional differential equations, numerical simulations are carried out to find the nonlinear dynamics characteristic of the system. From numerical simulation, we obtain the three dimensional phase portraits that show the nonlinear response of the hyper-chaotic finance system. From the results of numerical simulation, it is found that there exist periodic motions and chaotic motions under specific conditions. In addition, it is observed that the parameter of the saving has significant influence on the nonlinear dynamical behavior of the four dimensional autonomous hyper-chaotic system.


2016 ◽  
Vol 21 (2) ◽  
pp. 359-376
Author(s):  
N.A. Khan ◽  
F. Naz

AbstractThis investigation analyses a three dimensional flow and mass transfer of a second grade fluid over a porous stretching wall in the presence of suction or injection. The equations governing the flow are attained in terms of partial differential equations. A similarity transformation has been utilized for the transformation of partial differential equations into the ordinary differential equations. The solutions of the nonlinear systems are given by the homotopy analysis method (HAM). A comparative study with the previous results of a viscous fluid has been made. The convergence of the series solution has also been considered explicitly. The influence of admissible parameters on the flows is delineated through graphs and appropriate results are presented. In addition, it is found that instantaneous suction and injection reduce viscous drag on the stretching sheet. It is also shown that suction or injection of a fluid through the surface is an example of mass transfer and it can change the flow field.


Author(s):  
Oleksandr Ahafonov ◽  
◽  
Daria Chepiga ◽  
Anton Polozhiy ◽  
Iryna Bessarab ◽  
...  

Purpose. Substantiation of expediency and admissibility of use of the simplified calculation models of a coal seam roof for an estimation of its stability under the action of external loadings. Methods. To achieve this purpose, the studies have been performed using the basic principles of the theory of elasticity and bending of plates, in which the coal seam roof is represented as a model of a rectangular plate or a beam with a symmetrical cross-section with different support conditions. Results. To substantiate and select methods for studying the bending deformations of the roof in the coal massif containing the maingates, the three-dimensional base plate model and the beam model are compared, taking into account the kinematic boundary conditions and the influence of external distributed load. Using the theory of plate bending, the equations for determining the deflections of the coal seam roof in three-dimensional basic models under certain assumptions have a large dimension. After the conditional division of the plate into beams of unit width and symmetrical section, when describing the normal deflections of the middle surface of the studied models, the transition from the partial derivative equation to the usual differential equations is carried out. In this case, the studies of bending deformations of roof rocks are reduced to solving a flat problem in the cross-section of the beam. A comparison of solutions obtained by the methods of the three-dimensional theory of elasticity and strength of materials was performed. For a beam with a symmetrical section, the deflection lies in a plane whose angle of inclination coincides with the direction of the applied load. The calculations did not take into account the difference between the intensity of the surface load applied to the beam. Differences in determining the magnitude of the deflections of the roof in the model of the plate concerning the model of the beam reach 5%, which is acceptable for mining problems. Scientific novelty. To study the bending deformations and determine the magnitude of the roof deflection in models under external uniform distributed load, placed within the simulated plate, a strip of unit width was selected, which has a symmetrical cross-section and is a characteristic component of the plate structure and it is considered as a separate load-bearing element with supports, the cross-sections of this element is remained flat when bending. The deflection of such a linear element is described by the differential equations of the bent axis of the beam without taking into account the integral stiffness of the model, and the vector of its complete displacement coincides with the vector of the force line. Practical significance. In the laboratory, to study the bending deformations and their impact on the stability of the coal seam roof under external loads, it is advisable to use a model of a single width beam with a symmetrical section with supports, the type of which is determined by rock pressure control and secondary support of the maingate at the extraction layout of the coal mine.


Sign in / Sign up

Export Citation Format

Share Document