Paths swept out by initially slack flexible wires when cutting soft solids; when passing through a very viscous medium; and during regelation

Author(s):  
P.D Dunn ◽  
J.D Burton ◽  
X Xu ◽  
A.G Atkins

Flow and fracture of some soft solids may be described by the ‘solid’ mechanical properties of elastic modulus, yield stress and fracture toughness, all being dependent on rate, temperature and environment. Other soft solids behave more like very viscous materials. When cutting soft solids, friction is often high between the blade and the material, and cutting is made easier when performed with a thin wire. The wire may be held taut in a frame like a fretsaw, but cutting is often done using an initially slack wire pulled into the solid by hand or machine. For both types of material behaviours, we investigate the curved shape taken by a loaded wire, elements along which cut into the material both radially and tangentially. For soft materials displaying solid properties, the treatment is based on the analysis of bi-directional cutting by Atkins et al . (Atkins et al . 2004 J. Mater. Sci. 39 , 2761–2766), in which it was shown that the ratio ξ of tangential to radial displacements strongly influences the cutting forces. The shapes of wires of various lengths arranged as bowstrings, and the loads in the wires, are assessed against experiments on cheddar cheese. The resultant force takes a minimum value for a particular length of the wire, owing to the competition between lower cutting forces, but higher friction at large ξ and vice versa. Passage of a wire through very viscous materials is flow at very low Reynolds number. To determine the path swept out, we make use of the property of all slender bodies of revolution in highly viscous flow, namely, that the drag exerted across the body is approximately twice as large as along. Comparison is made with the experiments on weighted threads falling under gravity in glycerine. Regelation is another example of passage of a wire through a solid. The mechanism is completely different but, in the context of the present paper, we provide in appendix A the solution for the typical hours-long school demonstration where, unlike most reported studies, non-uniform temperature fields develop in the block of ice. Comparison is made with experiment.

2007 ◽  
Vol 582 ◽  
pp. 223-251 ◽  
Author(s):  
Q. X. WANG

The irrotational flow past two slender bodies of revolution at angles of yaw, translating in parallel paths in very close proximity, is analysed by extending the classical slender body theory. The flow far away from the two bodies is shown to be a direct problem, which is represented in terms of two line sources along their longitudinal axes, at the strengths of the variation rates of their cross-section areas. The inner flow near the two bodies is reduced to the plane flow problem of the expanding (contracting) and lateral translations of two parallel circular cylinders with different radii, which is then solved analytically using conformal mapping. Consequently, an analytical flow solution has been obtained for two arbitrary slender bodies of revolution at angles of yaw translating in close proximity. The lateral forces and yaw moments acting on the two bodies are obtained in terms of integrals along the body lengths. A comparison is made among the present model for two slender bodies in close proximity, Tuck & Newman's (1974) model for two slender bodies far apart, and VSAERO (AMI)–commercial software based on potential flow theory and the boundary element method (BEM). The attraction force of the present model agrees well with the BEM result, when the clearance, h0, is within 20% of the body length, whereas the attraction force of Tuck & Newman is much smaller than the BEM result when h0 is within 30% of the body length, but approaches the latter when h0 is about half the body length. Numerical simulations are performed for the three typical manoeuvres of two bodies: (i) a body passing a stationary body, (ii) two bodies in a meeting manoeuvre (translating in opposite directions), and (iii) two bodies in a passing manoeuvre (translating in the same direction). The analysis reveals the orders of the lateral forces and yaw moments, as well as their variation trends in terms of the manoeuvre type, velocities, sizes, angles of yaw of the two bodies, and their proximity, etc. These irrotational dynamic features are expected to provide a basic understanding of this problem and will be beneficial to further numerical and experimental studies involving additional physical effects.


1958 ◽  
Vol 62 (575) ◽  
pp. 832-833
Author(s):  
Svetopolk Pivko

A Phenomenon of interest in the study of high-speed aerodynamics concerns the flows generated around very slender bodies of revolution. It has been observed that these bodies, at moderate and large angles of attack, produce a kind of flow pattern that differs considerably from the ones assumed in perfect-fluid treatment according to the usual slender-body analysis.Photographs reveal that the flow above the upper surface of the body contains two symmetrically disposed spiral vortex sheets which roll up and are carried down-stream. Viewed in respect to the stationary body, the shed vortices appear fixed. The vortices increase in strength as anybody cross plane moves rearward, being eventually discharged to form a Karman vortex street as viewed in the moving cross plane.


1975 ◽  
Vol 70 (4) ◽  
pp. 651-661 ◽  
Author(s):  
P. Sivakrishna Prasad ◽  
N. R. Subramanian

Using the method of matched asymptotic expansions, an expansion of the velocity potential for steady incompressible flow has been obtained to order ε4for slender bodies of revolution at an angle of attack by representing the potential due to the body as a superposition of potentials of sources and doublets distributed along a segment of the axis inside the body excluding an interval near each end of the body. Also, expansions of the coefficients of longitudinal virtual mass and lateral virtual mass have been found. The pressure distributions over an ellipsoid of revolution of thickness ratio ε = 0·3 at zero angle of attack and at an angle of attack of 3° obtained by the present method are compared with results obtained from the exact theory and that of Van Dyke. The virtual-mass coefficients are also compared with those obtained from the exact theory and are found to be in good agreement up to ε = 0·3.


1955 ◽  
Vol 6 (2) ◽  
pp. 114-124 ◽  
Author(s):  
L. E. Fraenkel ◽  
H. Portnoy

SummaryWard’s slender-body theory is extended to derive first approximations to the external forces on slender bodies of general cross section with discontinuous profile slope. Two classes of body are considered: bodies whose profile (typified by the local radius) is continuous between the nose and base, and certain bodies whose profile is discontinuous, such as bodies with annular or side air intakes and wing-bodies on which the wing has an unswept leading edge. (Where air intakes are concerned, it is assumed that they are sharp-edged and that there is no “ spillage ” of the internal flow).The following conclusions apply to the former class of bodies. The variation of drag with Mach number is found to depend only on the discontinuities in the longitudinal rate of change of the cross-sectional area, and is thus independent of cross-sectional shape. The drag itself is unchanged if the direction of the flow is reversed. The expressions for lift and moment assume the same forms as for smooth pointed bodies, the lift depending only on conditions at the base of the body.The general theory is applied to winged bodies of revolution with an unswept wing leading edge: the results bear a marked resemblance to those obtained by Ward. The results for wings alone are seen to be applicable, with one modification, to subsonic as well as to supersonic speeds.


1980 ◽  
Vol 31 (1) ◽  
pp. 1-25
Author(s):  
K.D. Thomson

SummaryThe aim of this paper is to present a method for predicting the aerodynamic characteristics of slender bodies of revolution at small incidence, under flow conditions such that the boundary layer is turbulent. Firstly a panel method based on slender body theory is developed and used to calculate the surface velocity distribution on the body at zero incidence. Secondly this velocity distribution is used in conjunction with an existing boundary layer estimation method to calculate the growth of boundary layer displacement thickness which is added to the body to produce the effective aerodynamic profile. Finally, recourse is again made to slender body theory to calculate the normal force curve slope and centre of pressure position of the effective aerodynamic profile. Comparisons made between predictions and experiment for a number of slender bodies extending from highly boattailed configurations to ogive-cylinders, and covering a large range of boundary layer growth rates, indicate that the method is useful for missile design purposes.


1966 ◽  
Vol 181 (1) ◽  
pp. 687-705 ◽  
Author(s):  
P. L. Barlow

It has previously been suggested that the reduction in cutting forces obtained by the presence of fluids such as CCl4 on the backface or free surface of the forming chip was due to diffusion of the fluid into the body of the chip in the region of the shear zone. In the present work, experiments with carbon tetrachloride tagged with carbon-14 and with carbon tetrachloride tagged with chlorine-36 were performed with the object of assessing the extent of diffusion of lubricants into the chip when present on the free surface only. The results obtained disprove former hypotheses and suggest that the reduced cutting force is due solely to chemical reaction at the surface of the chip. Confirmation of the sensitivity of the surface of the deforming shear zone to change in surface condition was obtained by removing metal from this region by an electropolishing technique during slow speed cutting. By varying the electropolishing conditions increased or decreased cutting forces could be obtained. It is proposed that the result both of chemical reaction at the surface and of surface removal is to reduce the strain-hardening rate of the metal undergoing shear by reducing the surface barrier to the flow of dislocations out of the metal. The association of the surface reaction of carbon tetrachloride with a change in the strain-hardening characteristics of the metal in the shear zone leads to a classification of the backface phenomenon as a Rehbinder effect and enables this effect to be more closely defined than was hitherto possible. Evidence is also presented which indicates that the backface effect does not contribute to the reduction in cutting forces during rakeface lubrication and is therefore unimportant in practice where flood lubrication of the cutting region invariably occurs.


1987 ◽  
Vol 109 (4) ◽  
pp. 912-918 ◽  
Author(s):  
J. R. Parsons ◽  
M. L. Arey

Experiments have been performed which describe the transient development of natural convective flow from both a single and two vertically aligned horizontal cylindrical heat sources. The temperature of the wire heat sources was monitored with a resistance bridge arrangement while the development of the flow field was observed optically with a Mach–Zehnder interferometer. Results for the single wire show that after an initial regime where the wire temperature follows pure conductive response to a motionless fluid, two types of fluid motion will begin. The first is characterized as a local buoyancy, wherein the heated fluid adjacent to the wire begins to rise. The second is the onset of global convective motion, this being governed by the thermal stability of the fluid layer immediately above the cylinder. The interaction of these two motions is dependent on the heating rate and relative heat capacities of the cylinder and fluid, and governs whether the temperature response will exceed the steady value during the transient (overshoot). The two heat source experiments show that the merging of the two developing temperature fields is hydrodynamically stabilizing and thermally insulating. For small spacing-to-diameter ratios, the development of convective motion is delayed and the heat transfer coefficients degraded by the proximity of another heat source. For larger spacings, the transient behavior approaches that of a single isolated cylinder.


Author(s):  
Андрей Геннадьевич Деменков ◽  
Геннадий Георгиевич Черных

С применением математической модели, включающей осредненные уравнения движения и дифференциальные уравнения переноса нормальных рейнольдсовых напряжений и скорости диссипации, выполнено численное моделирование эволюции безымпульсного закрученного турбулентного следа с ненулевым моментом количества движения за телом вращения. Получено, что начиная с расстояний порядка 1000 диаметров от тела течение становится автомодельным. На основе анализа результатов численных экспериментов построены упрощенные математические модели дальнего следа. Swirling turbulent jet flows are of interest in connection with the design and development of various energy and chemical-technological devices as well as both study of flow around bodies and solving problems of environmental hydrodynamics, etc. An interesting example of such a flow is a swirling turbulent wake behind bodies of revolution. Analysis of the known works on the numerical simulation of swirling turbulent wakes behind bodies of revolution indicates lack of knowledge on the dynamics of the momentumless swirling turbulent wake. A special case of the motion of a body with a propulsor whose thrust compensates the swirl is studied, but there is a nonzero integral swirl in the flow. In previous works with the participation of the authors, a numerical simulation of the initial stage of the evolution of a swirling momentumless turbulent wake based on a hierarchy of second-order mathematical models was performed. It is shown that a satisfactory agreement of the results of calculations with the available experimental data is possible only with the use of a mathematical model that includes the averaged equations of motion and differential equations for the transfer of normal Reynolds stresses along the rate of dissipation. In the present work, based on the above mentioned mathematical model, a numerical simulation of the evolution of a far momentumless swirling turbulent wake with a nonzero angular momentum behind the body of revolution is performed. It is shown that starting from distances of the order of 1000 diameters from the body the flow becomes self-similar. Based on the analysis of the results of numerical experiments, simplified mathematical models of the far wake are constructed. The authors dedicate this work to the blessed memory of Vladimir Alekseevich Kostomakha.


Author(s):  
D.A. Ivanychev ◽  
E.Yu. Levina

In this work, we studied the axisymmetric elastic equilibrium of transversely isotropic bodies of revolution, which are simultaneously under the influence of surface and volume forces. The construction of the stress-strain state is carried out by means of the boundary state method. The method is based on the concepts of internal and boundary states conjugated by an isomorphism. The bases of state spaces are formed, orthonormalized, and the desired state is expanded in a series of elements of the orthonormal basis. The Fourier coefficients, which are quadratures, are calculated. In this work, we propose a method for forming bases of spaces of internal and boundary states, assigning a scalar product and forming a system of equations that allows one to determine the elastic state of anisotropic bodies. The peculiarity of the solution is that the obtained stresses simultaneously satisfy the conditions both on the boundary of the body and inside the region (volume forces), and they are not a simple superposition of elastic fields. Methods are presented for solving the first and second main problems of mechanics, the contact problem without friction and the main mixed problem of the elasticity theory for transversely isotropic finite solids of revolution that are simultaneously under the influence of volume forces. The given forces are distributed axisymmetrically with respect to the geometric axis of rotation. The solution of the first main problem for a non-canonical body of revolution is given, an analysis of accuracy is carried out and a graphic illustration of the result is given


1981 ◽  
Vol 108 ◽  
pp. 147-157 ◽  
Author(s):  
R. M. Barron ◽  
J. T. Wiley

Hypersonic small-disturbance theory is extended to consider the problem of dusty-gas flow past thin two-dimensional bodies. The mass fraction of suspended particles is assumed to be sufficiently large that the two-way interaction between particle phase and gas phase must be considered. The system of eight governing equations is further reduced by considering the Newtonian approximation γ → 1 andM∞→ ∞. The Newtonian theory up to second order is studied and the equations are solved for the case of a thin wedge at zero angle of attack. Expressions for the streamlines, dust-particle paths, shock-wave location and all flow variables are obtained. It is seen that the presence of the dust increases the pressure along the wedge surface and tends to bend the shock wave towards the body surface. Other effects of the interaction of the two phases are also discussed.


Sign in / Sign up

Export Citation Format

Share Document