Deformation of metallic liquid drop by electric field for contacts in molecular–organic electronics

Author(s):  
M. Bag ◽  
D. Gupta ◽  
N. Arun ◽  
K.S. Narayan

We study and use the behaviour of a metallic liquid drop in the presence of an external electric field (EF). The droplet profile is governed by the stabilizing surface energy and the destabilizing electrostatic energy, with a critical voltage beyond which the droplet becomes unstable. We explore the EF-induced behaviour of low melting temperature alloy in the liquid state and observe that the droplet modifications in the linear response regime can be retained upon cooling the drop to the solid state. We demonstrate that this procedure can be used as an electrode with precise dimensions for applications in molecular and polymer electronics.

1997 ◽  
Vol 481 ◽  
Author(s):  
Matthew T. Johnson ◽  
Shelley R. Gilliss ◽  
C. Barry Carter

ABSTRACTThin films of In2O3 and Fe2O3 have been deposited on (001) MgO using pulsed-laser deposition (PLD). These thin-film diffusion couples were then reacted in an applied electric field at elevated temperatures. In this type of solid-state reaction, both the reaction rate and the interfacial stability are affected by the transport properties of the reacting ions. The electric field provides a very large external driving force that influences the diffusion of the cations in the constitutive layers. This induced ionic current causes changes in the reaction rates, interfacial stability and distribution of the phases. Through the use of electron microscopy techniques the reaction kinetics and interface morphology have been investigated in these spinel-forming systems, to gain a better understanding of the influence of an electric field on solid-state reactions.


2001 ◽  
Vol 27 (10) ◽  
pp. 886-888
Author(s):  
V. Z. Kanchukoev ◽  
A. Z. Kashezhev ◽  
A. Kh. Mambetov ◽  
V. A. Sozaev

1992 ◽  
Author(s):  
Nickolay B. Kuleshov ◽  
Victor A. Tarasov ◽  
Igor V. Tokarev ◽  
Sergey S. Sarkisov

2002 ◽  
Vol 16 (17n18) ◽  
pp. 2529-2535
Author(s):  
R. Tao ◽  
X. Xu ◽  
Y. C. Lan

When a strong electric field is applied to a suspension of micron-sized high T c superconducting particles in liquid nitrogen, the particles quickly aggregate together to form millimeter-size balls. The balls are sturdy, surviving constant heavy collisions with the electrodes, while they hold over 106 particles each. The phenomenon is a result of interaction between Cooper pairs and the strong electric field. The strong electric field induces surface charges on the particle surface. When the applied electric field is strong enough, Cooper pairs near the surface are depleted, leading to a positive surface energy. The minimization of this surface energy leads to the aggregation of particles to form balls.


2002 ◽  
Vol 12 (9) ◽  
pp. 77-78
Author(s):  
S. N. Artemenko

Spectral density of fluctuations of the CDW phase are calculated taking into account electric field induced by phase fluctuations. The approach based upon the fluctuation-dissipation theorem (FDT) combined with equations of linear response of the CDW conductor is used. Fluctuating electric field is found to suppress fluctuations of the phase, while fluctuations of the electric potential are sizeable. This suggests that transition from the CDW to the normal state (which is usually observed well below the mean-field transition temperature) may he provoked by fluctuations of the chemical potential, rather than by destruction of the CDW coherence between conducting chains due to phase fluctuations.


AIP Advances ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 115122 ◽  
Author(s):  
Aya Obinata ◽  
Takamasa Hirai ◽  
Yoshinori Kotani ◽  
Kentaro Toyoki ◽  
Tetsuya Nakamura ◽  
...  

2015 ◽  
Vol 112 (7) ◽  
pp. 1995-1999 ◽  
Author(s):  
Sam Emaminejad ◽  
Mehdi Javanmard ◽  
Chaitanya Gupta ◽  
Shuai Chang ◽  
Ronald W. Davis ◽  
...  

The controlled immobilization of proteins on solid-state surfaces can play an important role in enhancing the sensitivity of both affinity-based biosensors and probe-free sensing platforms. Typical methods of controlling the orientation of probe proteins on a sensor surface involve surface chemistry-based techniques. Here, we present a method of tunably controlling the immobilization of proteins on a solid-state surface using electric field. We study the ability to orient molecules by immobilizing IgG molecules in microchannels while applying lateral fields. We use atomic force microscopy to both qualitatively and quantitatively study the orientation of antibodies on glass surfaces. We apply this ability for controlled orientation to enhance the performance of affinity-based assays. As a proof of concept, we use fluorescence detection to indirectly verify the modulation of the orientation of proteins bound to the surface. We studied the interaction of fluorescently tagged anti-IgG with surface immobilized IgG controlled by electric field. Our study demonstrates that the use of electric field can result in more than 100% enhancement in signal-to-noise ratio compared with normal physical adsorption.


Author(s):  
Jesko Sirker

These notes are based on a series of three lectures given at the Les Houches summer school on ’Integrability in Atomic and Condensed Matter Physics’ in August 2018. They provide an introduction into the unusual transport properties of integrable models in the linear response regime focussing, in particular, on the spin-1/21/2 XXZ spin chain.


2021 ◽  
Vol 23 (1) ◽  
pp. 597-606
Author(s):  
Victor Ponce ◽  
Diego E. Galvez-Aranda ◽  
Jorge M. Seminario

Speciation at the SEI and SSE of a solid-state nanobattery.


Sign in / Sign up

Export Citation Format

Share Document