scholarly journals Non-trivial avalanches triggered by shear banding in compression of metallic glass foams

Author(s):  
H. Lin ◽  
C. lu ◽  
H. Y. Wang ◽  
L. H. Dai

Ductile metallic glass foams (DMGFs) are a new type of structural material with a perfect combination of high strength and toughness. Owing to their disordered atomic-scale microstructures and randomly distributed macroscopic voids, the compressive deformation of DMGFs proceeds through multiple nanoscale shear bands accompanied by local fracture of cellular structures, which induces avalanche-like intermittences in stress–strain curves. In this paper, we present a statistical analysis, including distributions of avalanche size, energy dissipation, waiting times and aftershock sequence, on such a complex dynamic process, which is dominated by shear banding. After eliminating the influence of structural disorder, we demonstrate that, in contrast to the mean-field results of their brittle counterparts, scaling laws in DMGFs are characterized by different exponents. It is shown that the occurrence of non-trivial scaling behaviours is attributed to the localized plastic yielding, which effectively prevents the system from building up a long-range correlation. This accounts for the high structural stability and energy absorption performance of DMGFs. Furthermore, our results suggest that such shear banding dynamics introduce an additional characteristic time scale, which leads to a universal gamma distribution of waiting times.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hosni Idrissi ◽  
Matteo Ghidelli ◽  
Armand Béché ◽  
Stuart Turner ◽  
Sébastien Gravier ◽  
...  

Abstract The fundamental plasticity mechanisms in thin freestanding Zr65Ni35 metallic glass films are investigated in order to unravel the origin of an outstanding strength/ductility balance. The deformation process is homogenous until fracture with no evidence of catastrophic shear banding. The creep/relaxation behaviour of the films was characterized by on-chip tensile testing, revealing an activation volume in the range 100–200 Å3. Advanced high-resolution transmission electron microscopy imaging and spectroscopy exhibit a very fine glassy nanostructure with well-defined dense Ni-rich clusters embedded in Zr-rich clusters of lower atomic density and a ~2–3 nm characteristic length scale. Nanobeam electron diffraction analysis reveals that the accumulation of plastic deformation at room-temperature correlates with monotonously increasing disruption of the local atomic order. These results provide experimental evidences of the dynamics of shear transformation zones activation in metallic glasses. The impact of the nanoscale structural heterogeneities on the mechanical properties including the rate dependent behaviour is discussed, shedding new light on the governing plasticity mechanisms in metallic glasses with initially heterogeneous atomic arrangement.


2006 ◽  
Vol 21 (6) ◽  
pp. 1570-1575 ◽  
Author(s):  
W.H. Jiang ◽  
F.X. Liu ◽  
D.C. Qiao ◽  
H. Choo ◽  
P.K. Liaw

Using geometrically constrained specimens, the plastic flow behaviors of the as-cast and the relaxed Zr52.5Cu17.9Ni14.6Al10.0Ti5.0 bulk metallic glass in the dynamic compression were investigated. Both alloys exhibit a significant plasticity in the dynamic compression. The plastic deformation in both alloys is still inhomogeneous, which is characterized by the serrated plastic flow and the formation of shear bands. Free volumes affect the shear banding and the plastic flow. The reduced free volume results in the deviation of the shear banding direction from the maximum shear stress. The relaxed alloy exhibits the obvious stress overshoot, which is consistent with the theoretical prediction using a free volume model.


2009 ◽  
Vol 1185 ◽  
Author(s):  
Changqiang Chen ◽  
Yutao Pei ◽  
Jeff De Hosson

AbstractWe show results of in situ TEM (Transmission electron microscope) quantitative investigations on the compression behaviors of amorphous micropillars fabricated by focused ion beam from Cu47Ti33Zr11Ni6Sn2Si1 metallic glass (MG) ribbon. Pillars with well defined gauge sections and tip diameter ranging from 100 nm to 640 nm are studied. Quantitative compression tests were performed by a recently developed Picoindenter TEM holder, with the evolution of individual shear bands monitored in real time in TEM. It is found that the deformation of the MG pillars at the present size domain is still dominated by discrete shear banding as demonstrated by intermittent events in the load-displacement curves. However, the frequency, amplitude and distribution of these shear banding events are clearly size dependent at submicrometer scale, leading to an apparently transition in deformation mode from highly localized inhomogeneous deformation to less localized and more distributed deformation with decreasing pillars diameter. Deformation of a 105 nm diameter pillar having rounded tips is characterized with fully homogeneous bulge at the initial stage of deformation, indicating prompting effect of multi-axial stress state on transition to fully homogeneous deformation.


2010 ◽  
Vol 25 (3) ◽  
pp. 592-597 ◽  
Author(s):  
Ding Li ◽  
Mimi Yang ◽  
Fuqian Yang ◽  
Peter K. Liaw

Using the microindentation test, the stress-assisted-electrochemical corrosion of Cu46.25Zr45.25Al7.5Er1 bulk metallic glass (BMG) was studied in a 10 wt% NaCl electrolyte. The microindentation was performed in an indentation load range of 500 to 4000 mN to create shear bands over the deformation zone. Electric current of various densities was passed through the indented BMGs to evaluate the effect of shear bands and localized deformation on the electrochemical corrosion of the BMGs. Surface pits always initiated from the shear-banding zone and the contact edges between the indenter and the BMGs, and the size of the corroded zone grew with the increase in the polarization time, the indentation load, and the current density. Wormlike amorphous whiskers were formed over the corroded zone, and the density of the wormlike whiskers increased with the current density and polarization time.


2007 ◽  
Vol 22 (2) ◽  
pp. 368-373 ◽  
Author(s):  
W.H. Jiang ◽  
F.X. Liu ◽  
H.H. Liao ◽  
H. Choo ◽  
P.K. Liaw

Using an infrared camera, the plastic deformation of a relaxed Zr52.5Cu17.9Ni14.6Al10.0Ti5.0 bulk-metallic glass in a moderately high strain rate compression was observed in situ. The specimen exhibits an inhomogeneous deformation, which is manifested by serrated plastic flow, shear banding, and obvious work softening. Shear-banding operations were observed throughout the plastic deformation. Shear-banding operations started before the nominal yielding; shear bands could not block each other, but their interaction seems to accelerate the plastic deformation. A significant increase in the specimen’s temperature was observed due to shear banding.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 257
Author(s):  
Anne Tanguy ◽  
Peifang Chen ◽  
Thibaut Chaise ◽  
Daniel Nélias

The case of a frictionless contact between a spherical body and a flat metallic glass is studied using a mesoscopic description of plasticity combined with a semi-analytical description of the elastic deformation in a contact geometry (code ISAAC). Plasticity is described by irreversible strain rearrangements in the maximum deviatoric strain direction, above some random strain threshold. In the absence of adhesion or friction, the plastic deformation is initiated below the surface. To represent the singularities due to adhesion, initial rearrangements are forced at the boundary of the contact. Then, the structural disorder is introduced in two different levels: either in the local strain thresholds for plasticity or in the residual plastic strains. It is shown that the spatial organization of plastic rearrangements is not universal, but it is very dependent on the choice of disorder and external loading conditions. Spatial curved shear bands may appear below the contact but only for a very specific set of parameters, especially those characterizing the random thresholds compared to externally induced strain gradients.


2007 ◽  
Vol 22 (2) ◽  
pp. 460-470 ◽  
Author(s):  
D.T.A. Matthews ◽  
V. Ocelík ◽  
J.Th.M. de Hosson

Laser remelted surface layers of a Cu-based metallic glass forming alloy have been produced with fully amorphous depths up to 350 μm for single track widths of around 1.3 mm and have been checked by transmission of synchrotron radiation. They have been subjected to indentation hardness and scratch testing, and the development of shear bands in both situations has been addressed. During the cross-sectional hardness indentation tests, Vickers values of over 735 HV2 have been found through the depth of the treated layer, and the scratch testing has revealed extremely low friction coefficient values (<0.02 at 10 N in single-pass and 0.02 at 18 N multi-pass regimes against a diamond stylus). The shear band formation has been related to both scratch test speed (strain rate) and load (contact stress) by methods such as atomic force microscopy measurements and subsequent surface roughness characterization by a height–height correlation function.


2006 ◽  
Vol 21 (1) ◽  
pp. 153-160 ◽  
Author(s):  
L.F. Liu ◽  
L.H. Dai ◽  
Y.L. Bai ◽  
B.C. Wei ◽  
J. Eckert

In this study, the rate-dependent mechanical behavior of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass was studied using quasi-static and dynamic shear-punch testing at room temperature. The results demonstrate that the shear strength of this alloy is insensitive to the applied strain rate. However, the formation of shear bands and the serrated flow exhibits a significant strain rate effect. The shear banding-induced fracture patterns and the fracture-melting phenomenon were analyzed based on the free volume theory and the energy transfer model.


2000 ◽  
Vol 627 ◽  
Author(s):  
Prabhu R. Nott ◽  
K. Kesava Rao ◽  
L. Srinivasa Mohan

ABSTRACTThe slow flow of granular materials is often marked by the existence of narrow shear layers, adjacent to large regions that suffer little or no deformation. This behaviour, in the regime where shear stress is generated primarily by the frictional interactions between grains, has so far eluded theoretical description. In this paper, we present a rigid-plastic frictional Cosserat model that captures thin shear layers by incorporating a microscopic length scale. We treat the granular medium as a Cosserat continuum, which allows the existence of localised couple stresses and, therefore, the possibility of an asymmetric stress tensor. In addition, the local rotation is an independent field variable and is not necessarily equal to the vorticity. The angular momentum balance, which is implicitly satisfied for a classical continuum, must now be solved in conjunction with the linear momentum balances. We extend the critical state model, used in soil plasticity, for a Cosserat continuum and obtain predictions for flow in plane and cylindrical Couette devices. The velocity profile predicted by our model is in qualitative agreement with available experimental data. In addition, our model can predict scaling laws for the shear layer thickness as a function of the Couette gap, which must be verified in future experiments. Most significantly, our model can determine the velocity field in viscometric flows, which classical plasticity-based model cannot.


2021 ◽  
pp. 101446
Author(s):  
Zheng-Han Peng ◽  
Zeng-Yu Yang ◽  
Yun-Jiang Wang

Sign in / Sign up

Export Citation Format

Share Document