Stress-assisted-electrochemical corrosion of Cu-based bulk metallic glass

2010 ◽  
Vol 25 (3) ◽  
pp. 592-597 ◽  
Author(s):  
Ding Li ◽  
Mimi Yang ◽  
Fuqian Yang ◽  
Peter K. Liaw

Using the microindentation test, the stress-assisted-electrochemical corrosion of Cu46.25Zr45.25Al7.5Er1 bulk metallic glass (BMG) was studied in a 10 wt% NaCl electrolyte. The microindentation was performed in an indentation load range of 500 to 4000 mN to create shear bands over the deformation zone. Electric current of various densities was passed through the indented BMGs to evaluate the effect of shear bands and localized deformation on the electrochemical corrosion of the BMGs. Surface pits always initiated from the shear-banding zone and the contact edges between the indenter and the BMGs, and the size of the corroded zone grew with the increase in the polarization time, the indentation load, and the current density. Wormlike amorphous whiskers were formed over the corroded zone, and the density of the wormlike whiskers increased with the current density and polarization time.

2006 ◽  
Vol 21 (6) ◽  
pp. 1570-1575 ◽  
Author(s):  
W.H. Jiang ◽  
F.X. Liu ◽  
D.C. Qiao ◽  
H. Choo ◽  
P.K. Liaw

Using geometrically constrained specimens, the plastic flow behaviors of the as-cast and the relaxed Zr52.5Cu17.9Ni14.6Al10.0Ti5.0 bulk metallic glass in the dynamic compression were investigated. Both alloys exhibit a significant plasticity in the dynamic compression. The plastic deformation in both alloys is still inhomogeneous, which is characterized by the serrated plastic flow and the formation of shear bands. Free volumes affect the shear banding and the plastic flow. The reduced free volume results in the deviation of the shear banding direction from the maximum shear stress. The relaxed alloy exhibits the obvious stress overshoot, which is consistent with the theoretical prediction using a free volume model.


2007 ◽  
Vol 22 (2) ◽  
pp. 368-373 ◽  
Author(s):  
W.H. Jiang ◽  
F.X. Liu ◽  
H.H. Liao ◽  
H. Choo ◽  
P.K. Liaw

Using an infrared camera, the plastic deformation of a relaxed Zr52.5Cu17.9Ni14.6Al10.0Ti5.0 bulk-metallic glass in a moderately high strain rate compression was observed in situ. The specimen exhibits an inhomogeneous deformation, which is manifested by serrated plastic flow, shear banding, and obvious work softening. Shear-banding operations were observed throughout the plastic deformation. Shear-banding operations started before the nominal yielding; shear bands could not block each other, but their interaction seems to accelerate the plastic deformation. A significant increase in the specimen’s temperature was observed due to shear banding.


2006 ◽  
Vol 21 (1) ◽  
pp. 153-160 ◽  
Author(s):  
L.F. Liu ◽  
L.H. Dai ◽  
Y.L. Bai ◽  
B.C. Wei ◽  
J. Eckert

In this study, the rate-dependent mechanical behavior of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass was studied using quasi-static and dynamic shear-punch testing at room temperature. The results demonstrate that the shear strength of this alloy is insensitive to the applied strain rate. However, the formation of shear bands and the serrated flow exhibits a significant strain rate effect. The shear banding-induced fracture patterns and the fracture-melting phenomenon were analyzed based on the free volume theory and the energy transfer model.


2009 ◽  
Vol 24 (7) ◽  
pp. 2346-2352 ◽  
Author(s):  
Fuqian Yang ◽  
Hongmei Dang ◽  
Gongyao Wang ◽  
Yoshihiko Yokoyama ◽  
Peter K. Liaw

The effects of the fatigue deformation on the localized deformation of a ZCAP-3 bulk metallic glass (BMG) were studied using the nanoindentation technique. A localized mechanical hardening was observed in the ZCAP-3 BMG between the shear bands in the fatigue-damaged zone. In contrast to the indentations of the BMG made far away from the fatigue-damaged zone, there was no indentation size effect. Both the reduced contact modulus and the indentation hardness were larger than those corresponding to the indentations of the ZCAP-3 BMG in the undamaged zone. These observations revealed the possible effects of local heating and stress-induced atomic rearrangements (i.e., inelastic deformation) on the reduction of the free volume in the BMG from the propagation of the fatigue crack.


Author(s):  
Vasily Astanin ◽  
Dmitry Gunderov ◽  
Zhi Qiang Ren ◽  
Ruslan Valiev ◽  
Jing Tao Wang

2003 ◽  
Vol 18 (9) ◽  
pp. 2039-2049 ◽  
Author(s):  
Jun Lu ◽  
Guruswami Ravichandran

An experimental study of the inelastic deformation of bulk metallic glass Zr41.2Ti13.8Cu12.5Ni10Be22.5 under multiaxial compression using a confining sleeve technique is presented. In contrast to the catastrophic shear failure (brittle) in uniaxial compression, the metallic glass exhibited large inelastic deformation of more than 10% under confinement, demonstrating the nature of ductile deformation under constrained conditions in spite of the long-range disordered characteristic of the material. It was found that the metallic glass followed a pressure (p) dependent Tresca criterion τ = τ0 + βp, and the coefficient of the pressure dependence β was 0.17. Multiple parallel shear bands oriented at 45° to the loading direction were observed on the surfaces of the deformed specimens and were responsible for the overall inelastic deformation.


2008 ◽  
Vol 496 (1-2) ◽  
pp. 285-290 ◽  
Author(s):  
L. He ◽  
M.B. Zhong ◽  
Z.H. Han ◽  
Q. Zhao ◽  
F. Jiang ◽  
...  

2007 ◽  
Vol 22 (10) ◽  
pp. 2655-2658 ◽  
Author(s):  
W.H. Jiang ◽  
F.X. Liu ◽  
F. Jiang ◽  
K.Q. Qiu ◽  
H. Choo ◽  
...  

We investigated the effect of strain rate on the plastic-flow stress of a Zr-based bulk-metallic glass in quasistatic compression. The results indicate that the plastic-flow stress is dependent on the strain rate: an increase in the strain rate leads to a decrease in the plastic-flow stress, and vice versa. However, simply loading, unloading, and reloading at a constant strain rate do not change the plastic-flow stress. This strain-rate dependence of the plastic-flow stress may be related to shear-banding operations.


Author(s):  
H. Lin ◽  
C. lu ◽  
H. Y. Wang ◽  
L. H. Dai

Ductile metallic glass foams (DMGFs) are a new type of structural material with a perfect combination of high strength and toughness. Owing to their disordered atomic-scale microstructures and randomly distributed macroscopic voids, the compressive deformation of DMGFs proceeds through multiple nanoscale shear bands accompanied by local fracture of cellular structures, which induces avalanche-like intermittences in stress–strain curves. In this paper, we present a statistical analysis, including distributions of avalanche size, energy dissipation, waiting times and aftershock sequence, on such a complex dynamic process, which is dominated by shear banding. After eliminating the influence of structural disorder, we demonstrate that, in contrast to the mean-field results of their brittle counterparts, scaling laws in DMGFs are characterized by different exponents. It is shown that the occurrence of non-trivial scaling behaviours is attributed to the localized plastic yielding, which effectively prevents the system from building up a long-range correlation. This accounts for the high structural stability and energy absorption performance of DMGFs. Furthermore, our results suggest that such shear banding dynamics introduce an additional characteristic time scale, which leads to a universal gamma distribution of waiting times.


2007 ◽  
Vol 22 (2) ◽  
pp. 501-507 ◽  
Author(s):  
F.F. Wu ◽  
Z.F. Zhang ◽  
S.X. Mao

The quasi-static compressive deformation behavior of a Vitreloy 1 bulk metallic glass (BMG) with an aspect ratio of 0.25 was investigated. It is found that the friction and the confinement at the specimen–loading platen interface will cause the dramatic increase in the compressive load, leading to higher compressive strength. In particular, the BMG specimens show great plastic-deformation ability, and plenty of interacted, deflected, wavy, or branched shear bands were observed on the surfaces after plastic deformation. The formation of the strongly interacted, deflected, wavy, or branched shear bands can be attributed to the triaxial stress state in the glassy specimens with a very small aspect ratio.


Sign in / Sign up

Export Citation Format

Share Document