scholarly journals Magnetic winding: what is it and what is it good for?

Author(s):  
Christopher Prior ◽  
David MacTaggart

Magnetic winding is a fundamental topological quantity that underpins magnetic helicity and measures the entanglement of magnetic field lines. Like magnetic helicity, magnetic winding is also an invariant of ideal magnetohydrodynamics. In this article, we give a detailed description of what magnetic winding describes, how to calculate it and how to interpret it in relation to helicity. We show how magnetic winding provides a clear topological description of magnetic fields (open or closed) and we give examples to show how magnetic winding and helicity can behave differently, thus revealing different and important information about the underlying magnetic field.

1971 ◽  
Vol 43 ◽  
pp. 329-339 ◽  
Author(s):  
Dale Vrabec

Zeeman spectroheliograms of photospheric magnetic fields (longitudinal component) in the CaI 6102.7 Å line are being obtained with the new 61-cm vacuum solar telescope and spectroheliograph, using the Leighton technique. The structure of the magnetic field network appears identical to the bright photospheric network visible in the cores of many Fraunhofer lines and in CN spectroheliograms, with the exception that polarities are distinguished. This supports the evolving concept that solar magnetic fields outside of sunspots exist in small concentrations of essentially vertically oriented field, roughly clumped to form a network imbedded in the otherwise field-free photosphere. A timelapse spectroheliogram movie sequence spanning 6 hr revealed changes in the magnetic fields, including a systematic outward streaming of small magnetic knots of both polarities within annular areas surrounding several sunspots. The photospheric magnetic fields and a series of filtergrams taken at various wavelengths in the Hα profile starting in the far wing are intercompared in an effort to demonstrate that the dark strands of arch filament systems (AFS) and fibrils map magnetic field lines in the chromosphere. An example of an active region in which the magnetic fields assume a distinct spiral structure is presented.


2003 ◽  
Vol 21 (8) ◽  
pp. 1709-1722 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
J. A. Wild

Abstract. We calculate the azimuthal magnetic fields expected to be present in Saturn’s magnetosphere associated with two physical effects, and compare them with the fields observed during the flybys of the two Voyager spacecraft. The first effect is associated with the magnetosphere-ionosphere coupling currents which result from the sub-corotation of the magnetospheric plasma. This is calculated from empirical models of the plasma flow and magnetic field based on Voyager data, with the effective Pedersen conductivity of Saturn’s ionosphere being treated as an essentially free parameter. This mechanism results in a ‘lagging’ field configuration at all local times. The second effect is due to the day-night asymmetric confinement of the magnetosphere by the solar wind (i.e. the magnetopause and tail current system), which we have estimated empirically by scaling a model of the Earth’s magnetosphere to Saturn. This effect produces ‘leading’ fields in the dusk magnetosphere, and ‘lagging’ fields at dawn. Our results show that the azimuthal fields observed in the inner regions can be reasonably well accounted for by plasma sub-corotation, given a value of the effective ionospheric Pedersen conductivity of ~ 1–2 mho. This statement applies to field lines mapping to the equator within ~ 8 RS (1 RS is taken to be 60 330 km) of the planet on the dayside inbound passes, where the plasma distribution is dominated by a thin equatorial heavy-ion plasma sheet, and to field lines mapping to the equator within ~ 15 RS on the dawn side outbound passes. The contributions of the magnetopause-tail currents are estimated to be much smaller than the observed fields in these regions. If, however, we assume that the azimuthal fields observed in these regions are not due to sub-corotation but to some other process, then the above effective conductivities define an upper limit, such that values above ~ 2 mho can definitely be ruled out. Outside of this inner region the spacecraft observed both ‘lagging’ and ‘leading’ fields in the post-noon dayside magnetosphere during the inbound passes, with ‘leading’ fields being observed both adjacent to the magnetopause and in the ring current region, and ‘lagging’ fields being observed between. The observed ‘lagging’ fields are consistent in magnitude with the sub-corotation effect with an effective ionospheric conductivity of ~ 1–2 mho, while the ‘leading’ fields are considerably larger than those estimated for the magnetopause-tail currents, and appear to be indicative of the presence of another dynamical process. No ‘leading’ fields were observed outside the inner region on the dawn side outbound passes, with the azimuthal fields first falling below those expected for sub-corotation, before increasing, to exceed these values at radial distances beyond ~ 15–20 RS , where the effect of the magnetopause-tail currents becomes significant. As a by-product, our investigation also indicates that modification and scaling of terrestrial magnetic field models may represent a useful approach to modelling the three-dimensional magnetic field at Saturn.Key words. Magnetospheric physics (current systems; magnetosphere-ionosphere interactions; solar wind-magnetosphere interactions)


2012 ◽  
Vol 8 (S294) ◽  
pp. 13-24
Author(s):  
Hongqi Zhang

AbstractThe helicity is important to present the basic topological configuration of magnetic field in solar atmosphere. The distribution of magnetic helicity in solar atmosphere is presented by means of the observational (vector) magnetograms. As the kinetic helicity in the solar subatmosphere can be inferred from the velocity field based on the technique of the helioseismology and used to compare with the magnetic helicity in the solar atmosphere, the observational helicities provide the important chance for the confirmation on the generation of magnetic fields in the subatmosphere and solar dynamo models also. In this paper, we present the observational magnetic and kinetic helicity in solar active regions and corresponding questions, except the relationship with solar eruptive phenomena.


2020 ◽  
Vol 495 (4) ◽  
pp. 3795-3806 ◽  
Author(s):  
James Wurster ◽  
Benjamin T Lewis

ABSTRACT Non-ideal magnetohydrodynamics (MHD) is the dominant process. We investigate the effect of magnetic fields (ideal and non-ideal) and turbulence (sub- and transsonic) on the formation of circumstellar discs that form nearly simultaneously with the formation of the protostar. This is done by modelling the gravitational collapse of a 1 M⊙ gas cloud that is threaded with a magnetic field and imposed with both rotational and turbulent velocities. We investigate magnetic fields that are parallel/antiparallel and perpendicular to the rotation axis, two rotation rates, and four Mach numbers. Disc formation occurs preferentially in the models that include non-ideal MHD where the magnetic field is antiparallel or perpendicular to the rotation axis. This is independent of the initial rotation rate and level of turbulence, suggesting that subsonic turbulence plays a minimal role in influencing the formation of discs. Aside from first core outflows that are influenced by the initial level of turbulence, non-ideal MHD processes are more important than turbulent processes during the formation of discs around low-mass stars.


1990 ◽  
Vol 140 ◽  
pp. 379-380
Author(s):  
Kazunari Shibata ◽  
Ryoji Matsumoto

Magnetohydrodynamic (MHD) mechanisms producing radio lobes, shells, and filaments in the Galactic center as well as in the gas disk of the Galaxy are studied by using two-dimensional MHD code: (a) the explosion in a magnetized disk, (b) the interaction of a rotating disk with vertical fields, and (c) the nonlinear Parker instability in toroidal magnetic fields in a disk. In all cases, dense shells or filaments are created along magnetic field lines in a transient state, in contrast to the quasi-equilibrium filaments perpendicular to magnetic fields.


Proceedings ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 13 ◽  
Author(s):  
Zdeněk Stuchlík ◽  
Martin Kološ ◽  
Arman Tursunov

Properties of charged particle motion in the field of magnetized black holes (BHs) imply four possible regimes of behavior of ionized Keplerian disks: survival in regular epicyclic motion, transformation into chaotic toroidal state, destruction due to fall into the BHs, destruction due to escape along magnetic field lines (escape to infinity for disks orbiting Kerr BHs). The regime of the epicyclic motion influenced by very weak magnetic fields can be related to the observed high-frequency quasiperiodic oscillations. In the case of very strong magnetic fields particles escaping to infinity could form UHECR due to extremely efficient magnetic Penrose process – protons with energy E > 10 21 eV can be accelerated by supermassive black holes with M ∼ 10 10 M ⊙ immersed in magnetic field with B ∼ 10 4 Gs.


2008 ◽  
Vol 4 (S259) ◽  
pp. 75-80 ◽  
Author(s):  
Roland Kothes ◽  
Jo-Anne Brown

AbstractAs Supernova remnants expand, their shock waves are freezing in and compressing the magnetic field lines they encounter; consequently we can use Supernova remnants as magnifying glasses for their ambient magnetic fields. We will describe a simple model to determine emission, polarization, and rotation measure characteristics of adiabatically expanding Supernova remnants and how we can exploit this model to gain information about the large scale magnetic field in our Galaxy. We will give two examples: The SNR DA530, which is located high above the Galactic plane, reveals information about the magnetic field in the halo of our Galaxy. The SNR G182.4+4.3 is located close to the anti-centre of our Galaxy and reveals the most probable direction where the large-scale magnetic field is perpendicular to the line of sight. This may help to decide on the large-scale magnetic field configuration of our Galaxy. But more observations of SNRs are needed.


2020 ◽  
Vol 495 (4) ◽  
pp. 3807-3818 ◽  
Author(s):  
James Wurster ◽  
Benjamin T Lewis

ABSTRACT Non-ideal magnetohydrodynamics (MHD) is the dominant process. We investigate the effect of magnetic fields (ideal and non-ideal) and turbulence (sub- and transsonic) on the formation of protostars by following the gravitational collapse of 1 M⊙ gas clouds through the first hydrostatic core to stellar densities. The clouds are imposed with both rotational and turbulent velocities, and are threaded with a magnetic field that is parallel/antiparallel or perpendicular to the rotation axis; we investigate two rotation rates and four Mach numbers. The initial radius and mass of the stellar core are only weakly dependent on the initial parameters. In the models that include ideal MHD, the magnetic field strength implanted in the protostar at birth is much higher than observed, independent of the initial level of turbulence; only non-ideal MHD can reduce this strength to near or below the observed levels. This suggests that not only is ideal MHD an incomplete picture of star formation, but that the magnetic fields in low mass stars are implanted later in life by a dynamo process. Non-ideal MHD suppresses magnetically launched stellar core outflows, but turbulence permits thermally launched outflows to form a few years after stellar core formation.


2019 ◽  
Vol 15 (S354) ◽  
pp. 228-231
Author(s):  
Chia-Hsien Lin ◽  
Guan-Han Huang ◽  
Lou-Chuang Lee

AbstractCoronal holes can be identified as the darkest regions in EUV or soft X-ray images with predominantly unipolar magnetic fields (LIRs) or as the regions with open magnetic fields (OMF). Our study reveals that only 12% of OMF regions are coincident with LIRs. The aim of this study is to investigate the conditions that affect the EUV intensity of OMF regions. Our results indicate that the EUV intensity and the magnetic field expansion factor of the OMF regions are weakly positively correlated when plotted in logarithmic scale, and that the bright OMF regions are likely to locate inside or next to the regions with closed field lines. We empirically determined a linear relationship between the expansion factor and the EUV intensity. The relationship is demonstrated to improve the consistency from 12% to 23%. The results have been published in Astrophysical Journal (Huang et al. 2019).


2008 ◽  
Vol 4 (S259) ◽  
pp. 551-552
Author(s):  
Hanna Kotarba ◽  
H. Lesch ◽  
K. Dolag ◽  
T. Naab ◽  
P. H. Johansson ◽  
...  

AbstractWe present a set of global, self-consistentN-body/SPH simulations of the dynamic evolution of galactic discs with gas and including magnetic fields. We have implemented a description to follow the ideal induction equation in the SPH part of the codeVine. Results from a direct implementation of the field equations are compared to a representation by Euler potentials, which pose a ∇ ċB-free description, a constraint not fulfilled for the direct implementation. All simulations are compared to an implementation of magnetic fields in the codeGadget. Starting with a homogeneous field we find a tight connection of the magnetic field structure to the density pattern of the galaxy in our simulations, with the magnetic field lines being aligned with the developing spiral pattern of the gas. Our simulations clearly show the importance of non-axisymmetry of the dynamic pattern for the evolution of the magnetic field.


Sign in / Sign up

Export Citation Format

Share Document