scholarly journals An experimental study of the population and evolutionary dynamics of Vibrio cholerae O1 and the bacteriophage JSF4

2010 ◽  
Vol 277 (1698) ◽  
pp. 3247-3254 ◽  
Author(s):  
Yan Wei ◽  
Paolo Ocampo ◽  
Bruce R. Levin

Studies of Vibrio cholerae in the environment and infected patients suggest that the waning of cholera outbreaks is associated with rise in the density of lytic bacteriophage. In accordance with mathematical models, there are seemingly realistic conditions where phage predation could be responsible for declines in the incidence of cholera. Here, we present the results of experiments with the El Tor strain of V. cholerae (N16961) and a naturally occurring lytic phage (JSF4), exploring the validity of the main premise of this model: that phage predation limits the density of V. cholerae populations. At one level, the results of our experiments are inconsistent with this hypothesis. JSF4-resistant V. cholerae evolve within a short time following their confrontation with these viruses and their populations become limited by resources rather than phage predation. At a larger scale, however, the results of our experiments are not inconsistent with the hypothesis that bacteriophage modulate outbreaks of cholera. We postulate that the resistant bacteria that evolved play an insignificant role in the ecology or pathogenicity of V. cholerae . Relative to the phage-sensitive cells from whence they are derived, the evolved JSF4-resistant V. cholerae have fitness costs and other characters that are likely to impair their ability to compete with the sensitive cells in their natural habitat and may be avirulent in human hosts. The results of this in vitro study make predictions that can be tested in natural populations of V. cholerae and cholera-infected patients.

2019 ◽  
Author(s):  
Waqas Chaudhry ◽  
Nicole Vega ◽  
Adithi Govindan ◽  
Rodrigo Garcia ◽  
Esther Lee ◽  
...  

AbstractBacteriophages are deemed either lytic (virulent) or temperate, respectively depending on whether their genomes are transmitted solely horizontally, or both horizontally and vertically. To elucidate the ecological and evolutionary conditions under which natural selection will favor the evolution and maintenance of lytic or temperate modes of phage replication and transmission, we use a comprehensive mathematical model of the dynamics of temperate and virulent phage in populations of bacteria sensitive and resistant to these viruses. For our numerical analysis of the properties of this model, we use parameters estimated with the temperate bacteriophage Lambda, λ, it’s clear and virulent mutants, andE. colisensitive and resistant - refractory to these phages. Using batch and serial transfer population dynamic and reconstruction experiments, we test the hypotheses generated from this theoretical analysis. Based on the results of this jointly theoretical and experimental study, we postulate the conditions under which natural selection will favor the evolution and maintenance of lytic and temperate modes of phage replication and transmission. A compelling and novel prediction thisin silico,in vitro, andin plasticostudy makes is lysogenic bacteria from natural populations will be resistant-refractory to the phage for which they are lysogenic as well as lytic phage sharing the same receptors as these temperate viruses.


2018 ◽  
Author(s):  
Angus Angermeyer ◽  
Moon Moon Das ◽  
Durg Vijai Singh ◽  
Kimberley D. Seed

AbstractThe Vibrio cholerae biotype ‘El Tor’ is responsible for all current epidemic and endemic cholera outbreaks worldwide. These outbreaks are clonal and are hypothesized to originate from the coastal areas near the Bay of Bengal where the lytic bacteriophage ICP1 specifically preys upon these pathogenic outbreak strains. ICP1 has also been the dominant bacteriophage found in cholera patient stool since 2001. However, little is known about its genomic differences between ICP1 strains collected over time. Here we elucidate the pan-genome and phylogeny of ICP1 strains by aligning, annotating and analyzing the genomes of 19 distinct isolates collected between 2001 and 2012. Our results reveal that ICP1 isolates are highly conserved and possess a large core-genome as well as a smaller, somewhat flexible accessory-genome. Despite its overall conservation, ICP1 strains have managed to acquire a number of unknown genes as well as a CRISPR-Cas system, which is known to be critical for its ongoing struggle for co-evolutionary dominance over its host. This study describes a foundation on which to construct future molecular and bioinformatic studies of this V. cholerae-associated bacteriophages.


2001 ◽  
Vol 69 (1) ◽  
pp. 435-445 ◽  
Author(s):  
Jutta Nesper ◽  
Crystal M. Lauriano ◽  
Karl E. Klose ◽  
Dagmar Kapfhammer ◽  
Anita Kraiß ◽  
...  

ABSTRACT Recently we described the isolation of spontaneous bacteriophage K139-resistant Vibrio cholerae O1 El Tor mutants. In this study, we identified phage-resistant isolates with intact O antigen but altered core oligosaccharide which were also affected in galactose catabolism; this strains have mutations in the galU gene. We inactivated another gal gene, galE, and the mutant was also found to be defective in the catabolism of exogenous galactose but synthesized an apparently normal lipopolysaccharide (LPS). Both gal mutants as well as a rough LPS (R-LPS) mutant were investigated for the ability to colonize the mouse small intestine. The galU and R-LPS mutants, but not thegalE mutant, were defective in colonization, a phenotype also associated with O-antigen-negative mutants. By investigating several parameters in vitro, we could show that galU and R-LPS mutants were more sensitive to short-chain organic acids, cationic antimicrobial peptides, the complement system, and bile salts as well as other hydrophobic agents, indicating that their outer membrane no longer provides an effective barrier function. O-antigen-negative strains were found to be sensitive to complement and cationic peptides, but they displayed significant resistance to bile salts and short-chain organic acids. Furthermore, we found thatgalU and galE are essential for the formation of a biofilm in a spontaneous phage-resistant rugose variant, suggesting that the synthesis of UDP-galactose via UDP-glucose is necessary for biosynthesis of the exopolysaccharide. In addition, we provide evidence that the production of exopolysaccharide limits the access of phage K139 to its receptor, the O antigen. In conclusion, our results indicate involvement of galU in V. cholerae virulence, correlated with the observed change in LPS structure, and a role for galU and galE in environmental survival of V. cholerae.


2005 ◽  
Vol 73 (2) ◽  
pp. 972-980 ◽  
Author(s):  
C. G. Osorio ◽  
J. A. Crawford ◽  
J. Michalski ◽  
H. Martinez-Wilson ◽  
J. B. Kaper ◽  
...  

ABSTRACT We have constructed an improved recombination-based in vivo expression technology (RIVET) and used it as a screening method to identify Vibrio cholerae genes that are transcriptionally induced during infection of infant mice. The improvements include the introduction of modified substrate cassettes for resolvase that can be positively and negatively selected for, allowing selection of resolved strains from intestinal homogenates, and three different tnpR alleles that cover a range of translation initiation efficiencies, allowing identification of infection-induced genes that have low-to-moderate basal levels of transcription during growth in vitro. A transcriptional fusion library of 8,734 isolates of a V. cholerae El Tor strain that remain unresolved when the vibrios are grown in vitro was passed through infant mice, and 40 infection-induced genes were identified. Nine of these genes were inactivated by in-frame deletions, and their roles in growth in vitro and fitness during infection were measured by competition assays. Four mutant strains were attenuated >10-fold in vivo compared with the parental strain, demonstrating that infection-induced genes are enriched in genes essential for virulence.


2004 ◽  
Vol 186 (5) ◽  
pp. 1355-1361 ◽  
Author(s):  
Joaquín Sánchez ◽  
Gerardo Medina ◽  
Thomas Buhse ◽  
Jan Holmgren ◽  
Gloria Soberón-Chavez

ABSTRACT The regulatory systems controlling expression of the ctxAB genes encoding cholera toxin (CT) in the classical and El Tor biotypes of pathogenic Vibrio cholerae have been characterized and found to be almost identical. Notwithstanding this, special in vitro conditions, called AKI conditions, are required for El Tor bacteria to produce CT. The AKI conditions involve biphasic cultures. In phase 1 the organism is grown in a still tube for 4 h. In phase 2 the medium is poured into a flask to continue growth with shaking. Virtually no expression of CT occurs if this protocol is not followed. Here we demonstrated that CT expression takes place in single-phase still cultures if the volume-to-surface-area ratio is decreased, both under air and under an inert atmosphere. The expression of key genes involved in the regulation of CT production was analyzed, and we found that the expression pattern closely resembles the in vivo expression pattern.


1999 ◽  
Vol 181 (14) ◽  
pp. 4250-4256 ◽  
Author(s):  
Gabriela Kovacikova ◽  
Karen Skorupski

ABSTRACT We describe here a new member of the LysR family of transcriptional regulators, AphB, which is required for activation of the Vibrio cholerae ToxR virulence cascade. AphB activates the transcription of the tcpPH operon in response to environmental stimuli, and this process requires cooperation with a second protein, AphA. The expression of neither aphA or aphB is strongly regulated by environmental stimuli, raising the possibility that the activities of the proteins themselves may be influenced under various conditions. Strains of the El Tor biotype of V. choleraetypically exhibit lower expression of ToxR-regulated virulence genes in vitro than classical strains and require specialized culture conditions (AKI medium) to induce high-level expression. We show here that expression of aphB from the tac promoter in El Tor biotype strains dramatically increases virulence gene expression to levels similar to those observed in classical strains under all growth conditions examined. These results suggest that AphB plays a role in the differential regulation of virulence genes between the two disease-causing biotypes.


2019 ◽  
Vol 7 (11) ◽  
pp. 556 ◽  
Author(s):  
Lucia Blasco ◽  
Anton Ambroa ◽  
Maria Lopez ◽  
Laura Fernandez-Garcia ◽  
Ines Bleriot ◽  
...  

Phage therapy is an abandoned antimicrobial therapy that has been resumed in recent years. In this study, we mutated a lysogenic phage from Acinetobacter baumannii into a lytic phage (Ab105-2phiΔCI) that displayed antimicrobial activity against A. baumannii clinical strain Ab177_GEIH-2000 (isolated in the GEIH-REIPI Spanish Multicenter A. baumannii Study II 2000/2010, Umbrella Genbank Bioproject PRJNA422585, and for which meropenem and imipenem MICs of respectively, 32 µg/mL, and 16 µg/mL were obtained). We observed an in vitro synergistic antimicrobial effect (reduction of 4 log–7 log CFU/mL) between meropenem and the lytic phage in all combinations analyzed (Ab105-2phiΔCI mutant at 0.1, 1 and 10 MOI and meropenem at 1/4 and 1/8 MIC). Moreover, bacterial growth was reduced by 8 log CFU/mL for the combination of imipenem at 1/4 MIC plus lytic phage (Ab105-2phiΔCI mutant) and by 4 log CFU/mL for the combination of imipenem at 1/8 MIC plus lytic phage (Ab105-2phiΔCI mutant) at both MOI 1 and 10. These results were confirmed in an in vivo model (G. mellonella), and the combination of imipenem and mutant Ab105-2phiΔCI was most effective (p < 0.05). This approach could help to reduce the emergence of phage resistant bacteria and restore sensitivity to antibiotics used to combat multi-resistant strains of Acinetobacter baumannii.


2015 ◽  
Vol 198 (3) ◽  
pp. 578-590 ◽  
Author(s):  
Allison M. Box ◽  
Matthew J. McGuffie ◽  
Brendan J. O'Hara ◽  
Kimberley D. Seed

ABSTRACTThe classical and El Tor biotypes ofVibrio choleraeserogroup O1, the etiological agent of cholera, are responsible for the sixth and seventh (current) pandemics, respectively. A genomic island (GI), GI-24, previously identified in a classical biotype strain ofV. cholerae, is predicted to encode clustered regularly interspaced short palindromic repeat (CRISPR)-associated proteins (Cas proteins); however, experimental evidence in support of CRISPR activity inV. choleraehas not been documented. Here, we show that CRISPR-Cas is ubiquitous in strains of the classical biotype but excluded from strains of the El Tor biotype. We also providein silicoevidence to suggest that CRISPR-Cas actively contributes to phage resistance in classical strains. We demonstrate that transfer of GI-24 toV. choleraeEl Tor via natural transformation enables CRISPR-Cas-mediated resistance to bacteriophage CP-T1 under laboratory conditions. To elucidate the sequence requirements of this type I-E CRISPR-Cas system, we engineered a plasmid-based system allowing the directed targeting of a region of interest. Through screening for phage mutants that escape CRISPR-Cas-mediated resistance, we show that CRISPR targets must be accompanied by a 3′ TT protospacer-adjacent motif (PAM) for efficient interference. Finally, we demonstrate that efficient editing ofV. choleraelytic phage genomes can be performed by simultaneously introducing an editing template that allows homologous recombination and escape from CRISPR-Cas targeting.IMPORTANCECholera, caused by the facultative pathogenVibrio cholerae, remains a serious public health threat. Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) provide prokaryotes with sequence-specific protection from invading nucleic acids, including bacteriophages. In this work, we show that one genomic feature differentiating sixth pandemic (classical biotype) strains from seventh pandemic (El Tor biotype) strains is the presence of a CRISPR-Cas system in the classical biotype. We demonstrate that the CRISPR-Cas system from a classical biotype strain can be transferred to aV. choleraeEl Tor biotype strain and that it is functional in providing resistance to phage infection. Finally, we show that this CRISPR-Cas system can be used as an efficient tool for the editing ofV. choleraelytic phage genomes.


2015 ◽  
Vol 77 (5) ◽  
pp. 535-540 ◽  
Author(s):  
M. Shamim Hasan ZAHID ◽  
Sharda Prasad AWASTHI ◽  
Atsushi HINENOYA ◽  
Shinji YAMASAKI

Sign in / Sign up

Export Citation Format

Share Document