scholarly journals Combined Use of the Ab105-2φΔCI Lytic Mutant Phage and Different Antibiotics in Clinical Isolates of Multi-Resistant Acinetobacter baumannii

2019 ◽  
Vol 7 (11) ◽  
pp. 556 ◽  
Author(s):  
Lucia Blasco ◽  
Anton Ambroa ◽  
Maria Lopez ◽  
Laura Fernandez-Garcia ◽  
Ines Bleriot ◽  
...  

Phage therapy is an abandoned antimicrobial therapy that has been resumed in recent years. In this study, we mutated a lysogenic phage from Acinetobacter baumannii into a lytic phage (Ab105-2phiΔCI) that displayed antimicrobial activity against A. baumannii clinical strain Ab177_GEIH-2000 (isolated in the GEIH-REIPI Spanish Multicenter A. baumannii Study II 2000/2010, Umbrella Genbank Bioproject PRJNA422585, and for which meropenem and imipenem MICs of respectively, 32 µg/mL, and 16 µg/mL were obtained). We observed an in vitro synergistic antimicrobial effect (reduction of 4 log–7 log CFU/mL) between meropenem and the lytic phage in all combinations analyzed (Ab105-2phiΔCI mutant at 0.1, 1 and 10 MOI and meropenem at 1/4 and 1/8 MIC). Moreover, bacterial growth was reduced by 8 log CFU/mL for the combination of imipenem at 1/4 MIC plus lytic phage (Ab105-2phiΔCI mutant) and by 4 log CFU/mL for the combination of imipenem at 1/8 MIC plus lytic phage (Ab105-2phiΔCI mutant) at both MOI 1 and 10. These results were confirmed in an in vivo model (G. mellonella), and the combination of imipenem and mutant Ab105-2phiΔCI was most effective (p < 0.05). This approach could help to reduce the emergence of phage resistant bacteria and restore sensitivity to antibiotics used to combat multi-resistant strains of Acinetobacter baumannii.

Author(s):  
Lucia Blasco ◽  
Anton Ambroa ◽  
Maria Lopez ◽  
Laura Fernandez-Garcia ◽  
Ines Bleriot ◽  
...  

The global health emergency caused by multi-drug resistant bacteria has led to the search for and development of new antimicrobial agents. Phage therapy is an abandoned antimicrobial therapy that has been resumed in recent years. In this study, we mutated a lysogenic phage from Acinetobacter baumannii into a lytic phage (Ab105-2phi&Delta;CI) showing antimicrobial activity against A.baumannii clinical strains (such as Ab177_GEIH-2000 which showed MICs to meropenem and imipenem of 32 &micro;g/ml and 16 &micro;g/ml, respectively as well as belonging to GEIH-REIPI Spanish Multicenter A. baumannii Study II 2000/2010, Umbrella Genbank Bioproject PRJNA422585). We then enhanced the time kill curves (in vitro) and in Galleria mellonella survival assays (in vivo) antimicrobial activity of the new lytic phage by combining it with carbapenem antibiotics (meropenem and imipenem). We observed in vitro, an antimicrobial synergistic effect (from 4 log to 7 log CFU/ml) with meropenem plus lytic phage in all combinations analysed (0.1, 1 and 10 MOI of Ab105-2phi&Delta;CI mutant as well as 1/4 and 1/8 MIC of meropenem). Moreover, we had a decrease in bacterial growth of 8 log CFU/ml for the combination of imipenem at 1/4 MIC plus lytic phage (Ab105-2phi&Delta;CI mutant) and of 4 log CFU/ml for the combination of imipenem at 1/8 MIC plus lytic phage (Ab105-2phi&Delta;CI mutant) in both MOI 1 and 10. These results were confirmed in in vivo (G. mellonella) obtaining a higher effectiveness in the combination of imipenem and Ab105-2phi&Delta;CI mutant (P&lt;0.05 by Log Rank-Matel Cox test). This approach could help to reduce the emergence of phage resistant bacteria and restore sensitivity to the antibiotics when used to combat multiresistant strains of Acinetobacter baumannii.


2009 ◽  
Vol 53 (8) ◽  
pp. 3285-3293 ◽  
Author(s):  
Carolyn L. Cannon ◽  
Lisa A. Hogue ◽  
Ravy K. Vajravelu ◽  
George H. Capps ◽  
Aida Ibricevic ◽  
...  

ABSTRACT The expanding clinical challenge of respiratory tract infections due to resistant bacteria necessitates the development of new forms of therapy. The development of a compound composed of silver coupled to a methylated caffeine carrier (silver carbene complex 1 [SCC1]) that demonstrated in vitro efficacy against bacteria, including drug-resistant organisms, isolated from patients with respiratory tract infections was described previously. The findings of current in vitro studies now suggest that bactericidal concentrations of SCC1 are not toxic to airway epithelial cells in primary culture. Thus, it was hypothesized that SCC1 could be administered by the aerosolized route to concentrate delivery to the lung while minimizing systemic toxicity. In vivo, aerosolized SCC1 delivered to mice resulted in mild aversion behavior, but it was otherwise well tolerated and did not cause lung inflammation following administration over a 5-day period. The therapeutic efficacy of SCC1 compared to that of water was shown in a 3-day prophylaxis protocol, in which mice infected with a clinical strain of Pseudomonas aeruginosa had increased survival, decreased amounts of bacteria in the lung, and a lower prevalence of bacteremia. Similarly, by using an airway infection model in which bacteria were impacted in the airways by agarose beads, the administration of SCC1 was significantly superior to water in decreasing the lung bacterial burden and the levels of bacteremia and markers of airway inflammation. These observations indicate that aerosolized SCC1, a novel antimicrobial agent, warrants further study as a potential therapy for bacterial respiratory tract infections.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 650 ◽  
Author(s):  
Evan Delancey ◽  
Devin Allison ◽  
Hansa Raj KC ◽  
David F. Gilmore ◽  
Todd Fite ◽  
...  

Acinetobacter baumannii has emerged as one of the most lethal drug-resistant bacteria in recent years. We report the synthesis and antimicrobial studies of 25 new pyrazole-derived hydrazones. Some of these molecules are potent and specific inhibitors of A. baumannii strains with a minimum inhibitory concentration (MIC) value as low as 0.78 µg/mL. These compounds are non-toxic to mammalian cell lines in in vitro studies. Furthermore, one of the potent molecules has been studied for possible in vivo toxicity in the mouse model and found to be non-toxic based on the effect on 14 physiological blood markers of organ injury.


2019 ◽  
Author(s):  
L. Blasco ◽  
A. Ambroa ◽  
R. Trastoy ◽  
E. Perez-Nadales ◽  
F. Fernández-Cuenca ◽  
...  

ABSTRACTThe multidrug resistance (MDR) among pathogenic bacteria is jeopardizing the worth of antimicrobials, which had previously changed medical sciences. In this study, we used bioinformatic tools to identify the endolysins ElyA1 and ElyA2 (GH108-PG3 family) present in the genome of bacteriophages Ab1051Φ and Ab1052Φ, respectively. The muralytic activity of these endolysins over MDR clinical isolates (Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae) was tested using the turbidity reduction assay. The minimal inhibitory concentrations (MICs) of endolysin, colistin and their combination were determined using the microdilution checkerboard method. The antimicrobial activity of the combinations was confirmed by time kill curves and in vivo assays in larvae of Galleria mellonella. Our results showed that ElyA1 displayed activity against all 25 strains of A. baumannii and P. aeruginosa tested and against 13 out of 17 strains of K. pneumoniae. No activity was detected when assays were done with endolysin ElyA2. The combined antimicrobial activity of colistin and endolysin ElyA1 yielded a reduction in the colistin MIC for all strains studied, except K. pneumoniae. These results were confirmed in vivo in G. mellonella survival assays. In conclusion, the combination of colistin with new endolysins such as ElyA1 could increase the bactericidal activity and reduce the MIC of the antibiotic, thus also reducing the associated toxicity.IMPORTANCEThe development of multiresistance by pathogen bacteria increases the necessity of the development of new antimicrobial strategies. In this work, we combined the effect of the colistin with a new endolysin, ElyA1, from a bacteriophage present in the clinical strain of Acinetobacter baumannii Ab105. ElyA1 is a lysozyme-like family (GH108-GP3), whose antimicrobial activity was described for first time in this work. Also, another endolysin, ElyA2, with the same origin and family, was characterized but in this case no activity was detected. ElyA1 presented lytic activity over a broad spectrum of strains from A. baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. When colistin was combined with ElyA1 an increase of the antimicrobial activity was observed with a reduced concentration of colistin, and this observation was also confirmed in vivo in Galleria mellonella larvae. The combination of colistin with new endolysins as ElyA1 could increase the bactericidal activity and lowering the MIC of the antibiotic, thus also reducing the associated toxicity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chenglin Tao ◽  
Zhengfei Yi ◽  
Yaodong Zhang ◽  
Yao Wang ◽  
Hong Zhu ◽  
...  

Inappropriate use of antibiotics has accelerated to the emergence of multidrug-resistant bacteria, becoming a major health threat. Moreover, bacterial biofilms contribute to antibiotic resistance and prolonged infections. Bacteriophage (phage) therapy may provide an alternative strategy for controlling multidrug-resistant bacterial infections. In this study, a broad-host-range phage, SHWT1, with lytic activity against multidrug-resistant Salmonella was isolated, characterized and evaluated for the therapeutic efficacy in vitro and in vivo. Phage SHWT1 exhibited specific lytic activity against the prevalent Salmonella serovars, such as Salmonella Pullorum, Salmonella Gallinarum, Salmonella Enteritidis, and Salmonella Typhimurium. Morphological analysis showed that phage SHWT1 was a member of the family Siphoviridae and the order Caudovirales. Phage SHWT1 had a latent period of 5 min and burst size of ~150 plaque-forming units (PFUs)/cell. The phage was stable from pH 3-12 and 4–65°C. Phage SHWT1 also showed capacity to lyse Salmonella planktonic cells and inhibit the biofilm formation at optimal multiplicity of infection (MOI) of 0.001, 0.01, 0.1, and 100, respectively. In addition, phage SHWT1 was able to lyse intracellular Salmonella within macrophages. Genome sequencing and phylogenetic analyses revealed that SHWT1 was a lytic phage without toxin genes, virulence genes, antibiotic resistance genes, or significant genomic rearrangements. We found that phage SHWT1 could successfully protect mice against S. enteritidis and S. typhimurium infection. Elucidation of the characteristics and genome sequence of phage SHWT1 demonstrates that this phage is a potential therapeutic agent against the salmonellosis caused by multidrug-resistant Salmonella.


2019 ◽  
Vol 74 (12) ◽  
pp. 3462-3472 ◽  
Author(s):  
Gajapati Y N Varma ◽  
Githavani Kummari ◽  
Pradip Paik ◽  
Arunasree M Kalle

Abstract Background We have shown previously that celecoxib enhances the antibacterial effect of antibiotics and has sensitized drug-resistant bacteria to antibiotics at low concentrations using in vitro and in vivo model systems and also using clinically isolated ESKAPE pathogens. Objectives To identify the mechanism of action of celecoxib in potentiating the effect of antibiotics on bacteria. Methods Toxicogenomic expression analysis of Staphylococcus aureus in the presence or absence of ampicillin, celecoxib or both was carried out by microarray followed by validation of microarray results by flow cytometry and real-time PCR analysis, cocrystal development and analysis. Results The RNA expression map clearly indicated a change in the global transcriptome of S. aureus in the presence of cells treated with ampicillin alone, which was similar to that of celecoxib-treated cells in co-treated cells. Several essential, non-essential and virulence genes such as α-haemolysin (HLA), enterotoxins and β-lactamase were differentially regulated in co-treated cells. Further detailed analysis of the expression data indicated that the ion transporters and enzymes of the lipid biosynthesis pathway were down-regulated in co-treated cells leading to decreased membrane permeability and membrane potential. Cocrystal studies using Powder-X-Ray Diffraction (PXRD) and differential scanning calorimetry (DSC) indicated interactions between celecoxib and ampicillin, which might help in the entry of antibiotics. Conclusions Although further studies are warranted, here we report that celecoxib alters membrane potential and permeability, specifically by affecting the Na+/K+ ion transporter, and thereby increases the uptake of ampicillin by S. aureus.


2002 ◽  
Vol 46 (6) ◽  
pp. 1946-1952 ◽  
Author(s):  
A. Montero ◽  
J. Ariza ◽  
X. Corbella ◽  
A. Doménech ◽  
C. Cabellos ◽  
...  

ABSTRACT The treatment of life-threatening infections due to carbapenem-resistant Acinetobacter baumannii has become a serious challenge for physicians worldwide. Often, only colistin shows in general good in vitro activity against these carbapenem-resistant strains, but its antibacterial efficacy in comparison with the antibiotics most used in clinical practice is not well known. We studied the efficacy of colistin versus those of imipenem, sulbactam, tobramycin, and rifampin in an experimental pneumonia model with immunocompetent mice. We used three strains of A. baumannii corresponding to the main clones (A, D, and E) involved in the outbreaks of our hospital, with different grades of resistance to imipenem (imipenem MICs of 1, 8, and 512 μg/ml, respectively) and to the other antibiotics. The MIC of colistin was 0.5 μg/ml for the three strains. Reduction of log10 CFU/g in lung bacterial counts, clearance of bacteremia, and survival versus results with controls were used as parameters of efficacy. Imipenem and sulbactam (Δlung counts: −5.38 and −4.64 log10 CFU/ml) showed the highest level of bactericidal efficacy in infections by susceptible and even intermediate strains. Tobramycin and rifampin (−4.16 and −5.15 log10 CFU/ml) provided good results against intermediate or moderately resistant strains, in agreement with killing curves and pharmacodynamics. On the contrary, colistin showed the weakest antibacterial effect among the antibiotics tested, both in killing curves and in the in vivo model (−2.39 log10 CFU/ml; P < 0.05). We conclude that colistin did not appear as a good option for treatment of patients with pneumonia due to carbapenem-resistant A. baumannii strains. Other alternatives, including combinations with rifampin, may offer better therapeutic profiles and thus should be studied.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


2020 ◽  
Vol 15 (3) ◽  
pp. 193-206
Author(s):  
Brognara Lorenzo ◽  
Salmaso Luca ◽  
Mazzotti Antonio ◽  
Di M. Alberto ◽  
Faldini Cesare ◽  
...  

Background: Chronic wounds are commonly associated with polymicrobial biofilm infections. In the last years, the extensive use of antibiotics has generated several antibiotic-resistant variants. To overcome this issue, alternative natural treatments have been proposed, including the use of microorganisms like probiotics. The aim of this manuscript was to review current literature concerning the application of probiotics for the treatment of infected chronic wounds. Methods: Relevant articles were searched in the Medline database using PubMed and Scholar, using the keywords “probiotics” and “wound” and “injuries”, “probiotics” and “wound” and “ulcer”, “biofilm” and “probiotics” and “wound”, “biofilm” and “ulcer” and “probiotics”, “biofilm” and “ulcer” and “probiotics”, “probiotics” and “wound”. Results: The research initially included 253 articles. After removal of duplicate studies, and selection according to specific inclusion and exclusion criteria, 19 research articles were included and reviewed, accounting for 12 in vitro, 8 in vivo studies and 2 human studies (three articles dealing with animal experiments included also in vitro testing). Most of the published studies about the effects of probiotics for the treatment of infected chronic wounds reported a partial inhibition of microbial growth, biofilm formation and quorum sensing. Discussion: The application of probiotics represents an intriguing option in the treatment of infected chronic wounds with multidrug-resistant bacteria; however, current results are difficult to compare due to the heterogeneity in methodology, laboratory techniques, and applied clinical protocols. Lactobacillus plantarum currently represents the most studied strain, showing a positive application in burns compared to guideline treatments, and an additional mean in chronic wound infections. Conclusions: Although preliminary evidence supports the use of specific strains of probiotics in certain clinical settings such as infected chronic wounds, large, long-term clinical trials are still lacking, and further research is needed.


Sign in / Sign up

Export Citation Format

Share Document