scholarly journals Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme

2011 ◽  
Vol 279 (1734) ◽  
pp. 1740-1747 ◽  
Author(s):  
Craig R. White ◽  
Lesley A. Alton ◽  
Peter B. Frappell

Metabolic cold adaptation (MCA), the hypothesis that species from cold climates have relatively higher metabolic rates than those from warm climates, was first proposed nearly 100 years ago and remains one of the most controversial hypotheses in physiological ecology. In the present study, we test the MCA hypothesis in fishes at the level of whole animal, mitochondria and enzyme. In support of the MCA hypothesis, we find that when normalized to a common temperature, species with ranges that extend to high latitude (cooler climates) have high aerobic enzyme (citrate synthase) activity, high rates of mitochondrial respiration and high standard metabolic rates. Metabolic compensation for the global temperature gradient is not complete however, so when measured at their habitat temperature species from high latitude have lower absolute rates of metabolism than species from low latitudes. Evolutionary adaptation and thermal plasticity are therefore insufficient to completely overcome the acute thermodynamic effects of temperature, at least in fishes.

2017 ◽  
Vol 98 ◽  
pp. 309-316 ◽  
Author(s):  
Branwen Messamah ◽  
Vanessa Kellermann ◽  
Hans Malte ◽  
Volker Loeschcke ◽  
Johannes Overgaard

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Isabella Loughland ◽  
Alexander Little ◽  
Frank Seebacher

Abstract Background Thermal plasticity is pivotal for evolution in changing climates and in mediating resilience to its potentially negative effects. The efficacy to respond to environmental change depends on underlying mechanisms. DNA methylation induced by DNA methyltransferase 3 enzymes in the germline or during early embryonic development may be correlated with responses to environmental change. This developmental plasticity can interact with reversible acclimation within adult organisms, which would increase the speed of response and could alleviate potential mismatches between parental or early embryonic environments and those experienced at later life stages. Our aim was to determine whether there is a causative relationship between DNMT3 enzyme and developmental thermal plasticity and whether either or both interact with short-term acclimation to alter fitness and thermal responses in zebrafish (Danio rerio). Results We developed a novel DNMT3a knock-out model to show that sequential knock-out of DNA methyltransferase 3a isoforms (DNMT3aa−/− and DNMT3aa−/−ab−/−) additively decreased survival and increased deformities when cold developmental temperatures in zebrafish offspring mismatched warm temperatures experienced by parents. Interestingly, short-term cold acclimation of parents before breeding rescued DNMT3a knock-out offspring by restoring survival at cold temperatures. DNMT3a knock-out genotype interacted with developmental temperatures to modify thermal performance curves in offspring, where at least one DNMT3a isoform was necessary to buffer locomotion from increasing temperatures. The thermal sensitivity of citrate synthase activity, an indicator of mitochondrial density, was less severely affected by DNMT3a knock-out, but there was nonetheless a significant interaction between genotype and developmental temperatures. Conclusions Our results show that DNMT3a regulates developmental thermal plasticity and that the phenotypic effects of different DNMT3a isoforms are additive. However, DNMT3a interacts with other mechanisms, such as histone (de)acetylation, induced during short-term acclimation to buffer phenotypes from environmental change. Interactions between these mechanisms make phenotypic compensation for climate change more efficient and make it less likely that thermal plasticity incurs a cost resulting from environmental mismatches.


1999 ◽  
Vol 202 (18) ◽  
pp. 2485-2493
Author(s):  
R.E. Bishop ◽  
J.J. Torres

Leptocephali are the unusual transparent larvae that are typical of eels, bonefish, tarpon and ladyfish. Unlike the larvae of all other fishes, leptocephali may remain in the plankton as larvae for several months before metamorphosing into the juvenile form. During their planktonic phase, leptocephali accumulate energy reserves in the form of glycosaminoglycans, which are then expended to fuel metamorphosis. The leptocephalus developmental strategy is thus fundamentally different from that exhibited in all other fishes in two respects: it is far longer in duration and energy reserves are accumulated. It was anticipated that the unusual character of leptocephalus development would be reflected in the energy budget of the larva. This study describes the allocation of energy to metabolism and excretion, two important elements of the energy budget. Metabolic rates were measured directly in four species of leptocephali, Paraconger caudilimbatus, Ariosoma balearicum, Gymnothorax saxicola and Ophichthus gomesii, using sealed-jar respirometry at sea. Direct measurements of metabolic rates were corroborated by measuring activities of lactate dehydrogenase and citrate synthase, two key enzymes of intermediary metabolism, in addition to that of Na(+)/K(+)-ATPase, a ubiquitous ion pump important in osmotic regulation. Excretion rates were determined by subsampling the sea water used in the respiratory incubations. The entire premetamorphic size range for each species was used in all assays. Mass-specific oxygen consumption rate, excretion rate and all enzyme activities (y) declined precipitously with increasing mass (M) according to the equation y=aM(b), where a is a species-specific constant and −1.74<b<-0.44. In leptocephali, the highly negative slope of the familiar allometric equation describing the relationship between mass-specific metabolic rate and mass, normally between −0.33 and 0, showed that a massive decline in metabolic rate occurs with increasing size. The result suggests that the proportion of actively metabolizing tissue also declines with size, being replaced in large measure by the metabolically inert energy depot, the glycosaminoglycans. Leptocephali can thus grow to a large size with minimal metabolic penalty, which is an unusual and successful developmental strategy.


2013 ◽  
Vol 61 (4) ◽  
pp. 243-249 ◽  
Author(s):  
Vicente Gomes ◽  
Maria José de Arruda Campos Rocha Passos ◽  
Arthur José da Silva Rocha ◽  
Thais da Cruz Alves dos Santos ◽  
Alex Sander Dias Machado ◽  
...  

Changes in environmental factors may deeply affect the energy budget of Antarctic organisms as many of them are stenothermal and/or stenohaline ectotherms. In this context, the aim of this study is to contribute to knowledge on variations in the energy demand of the Antarctic amphipod, Gondogeneia antarctica as a function of temperature and salinity. Experiments were held at the Brazilian Antarctic Station "Comandante Ferraz", under controlled conditions. Animals collected at Admiralty Bay were acclimated to temperatures of 0ºC; 2.5ºC and 5ºC and to salinities of 35, 30 and 25. Thirty measurements were made for each of the nine combinations of the three temperatures and three salinities, totalling 270 measurements. Metabolic rates were assessed by oxygen consumption and total nitrogenous ammonia excretion, in sealed respirometers. When acclimated to salinities 30 or 35, metabolic rates at 0ºC and 2.5ºC were very similar indicating a possible mechanism of metabolic compensation for temperature. At 5.0ºC, however, metabolic rates were always higher. Lower salinities enhanced the effects of temperature on metabolism and ammonia excretion rates. The physiological adaptations of individuals of G. antarctica suggest adaptive mechanisms for energy saving, adjusted to an environment with stable conditions of temperature and salinity. Little is known about the joint effects of salinity and temperature and this study is an important contribution to the understanding of the mechanism of polar organisms in their adaptation to both factors.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0240390
Author(s):  
Hongxu Dong ◽  
Lindsay V. Clark ◽  
Xiaoli Jin ◽  
Kossonou Anzoua ◽  
Larisa Bagmet ◽  
...  

Miscanthus is a close relative of Saccharum and a potentially valuable genetic resource for improving sugarcane. Differences in flowering time within and between Miscanthus and Saccharum hinders intra- and interspecific hybridizations. A series of greenhouse experiments were conducted over three years to determine how to synchronize flowering time of Saccharum and Miscanthus genotypes. We found that day length was an important factor influencing when Miscanthus and Saccharum flowered. Sugarcane could be induced to flower in a central Illinois greenhouse using supplemental lighting to reduce the rate at which days shortened during the autumn and winter to 1 min d-1, which allowed us to synchronize the flowering of some sugarcane genotypes with Miscanthus genotypes primarily from low latitudes. In a complementary growth chamber experiment, we evaluated 33 Miscanthus genotypes, including 28 M. sinensis, 2 M. floridulus, and 3 M. ×giganteus collected from 20.9° S to 44.9° N for response to three day lengths (10 h, 12.5 h, and 15 h). High latitude-adapted M. sinensis flowered mainly under 15 h days, but unexpectedly, short days resulted in short, stocky plants that did not flower; in some cases, flag leaves developed under short days but heading did not occur. In contrast, for M. sinensis and M. floridulus from low latitudes, shorter day lengths typically resulted in earlier flowering, and for some low latitude genotypes, 15 h days resulted in no flowering. However, the highest ratio of reproductive shoots to total number of culms was typically observed for 12.5 h or 15 h days. Latitude of origin was significantly associated with culm length, and the shorter the days, the stronger the relationship. Nearly all entries achieved maximal culm length under the 15 h treatment, but the nearer to the equator an accession originated, the less of a difference in culm length between the short-day treatments and the 15 h day treatment. Under short days, short culms for high-latitude accessions was achieved by different physiological mechanisms for M. sinensis genetic groups from the mainland in comparison to those from Japan; for mainland accessions, the mechanism was reduced internode length, whereas for Japanese accessions the phyllochron under short days was greater than under long days. Thus, for M. sinensis, short days typically hastened floral induction, consistent with the expectations for a facultative short-day plant. However, for high latitude accessions of M. sinensis, days less than 12.5 h also signaled that plants should prepare for winter by producing many short culms with limited elongation and development; moreover, this response was also epistatic to flowering. Thus, to flower M. sinensis that originates from high latitudes synchronously with sugarcane, the former needs day lengths >12.5 h (perhaps as high as 15 h), whereas that the latter needs day lengths <12.5 h.


2015 ◽  
Vol 11 (1) ◽  
pp. 221-241 ◽  
Author(s):  
J. H. C. Bosmans ◽  
F. J. Hilgen ◽  
E. Tuenter ◽  
L. J. Lourens

Abstract. The influence of obliquity, the tilt of the Earth's rotational axis, on incoming solar radiation at low latitudes is small, yet many tropical and subtropical paleoclimate records reveal a clear obliquity signal. Several mechanisms have been proposed to explain this signal, such as the remote influence of high-latitude glacials, the remote effect of insolation changes at mid- to high latitudes independent of glacial cyclicity, shifts in the latitudinal extent of the tropics, and changes in latitudinal insolation gradients. Using a sophisticated coupled ocean–atmosphere global climate model, EC-Earth, without dynamical ice sheets, we performed two experiments of obliquity extremes. Our results show that obliquity-induced changes in tropical climate can occur without high-latitude ice sheet fluctuations. Furthermore, the tropical circulation changes are consistent with obliquity-induced changes in the cross-equatorial insolation gradient, implying that this gradient may be used to explain obliquity signals in low-latitude paleoclimate records instead of the classic 65° N summer insolation curve.


2018 ◽  
Vol 14 (2) ◽  
pp. 97
Author(s):  
Anwar Santoso ◽  
Dadang Nurmali ◽  
Mira Juangsih ◽  
Iyus Edi Rusnadi ◽  
Sri Ekawati ◽  
...  

The influence of geomagnetic storms on the ionosphere in the equatorial and low latitudes can be either rising or falling value of the value foF2 with the different response delay time. The difference in response is one of them allegedly influenced by the modification of Equatorial Electrojet (EEJ) generated by the penetration of high latitude electric field towards the low latitude electric field and the equator. Therefore, this paper analyzes the influence of the high latitude penetration of electric current to the low latitude electric current towards the ionosphere response to Indonesia's current geomagnetic storms using the data foF2 BPAA Sumedang (SMD; 6,910 S; 106,830E geographic coordinates or 16,550 S; 179,950 E magnetic coordinates) and data from the Biak geomagnetic field station (BIK; 1,080 S; 136,050 E geographic coordinates or  9,730 S; 207,390 E magnetic coordinates) in 2000-2001. The result showed that the injection of the electric field of the high latitudes to lower latitudes causing foF2 BPAA Sumedang to be disturbed. Onset of the foF2 disturbance in BPAA Sumedang started coincide with EEJ(HBIK-HDRW) and reached its minimum point with a time delay between 0 to 4 hours before and after Dst index reached the minimum point. For a delay time of 0 to 4 hours after the Dst index reached the minimum point, the results were in accordance with the research results from the prior research. However, for the time difference of between 0 to 4 hours before the Dst index reached the minimum point, the results differ from their results. AbstrakPengaruh badai geomagnet terhadap ionosfer di ekuator dan lintang rendah berupa naiknya nilai foF2 atau turunnya nilai foF2 dengan waktu tunda respon berbeda-beda. Perbedaan respon tersebut salah satunya diduga dipengaruhi oleh modifikasi Equatorial electrojet (EEJ) yang dihasilkan oleh penetrasi medan listrik lintang tinggi sampai daerah lintang rendah dan ekuator. Oleh karena itu, dalam makalah ini dilakukan analisis pengaruh penetrasi arus listrik lintang tinggi ke lintang rendah terhadap ionosfer saat badai geomagnet menggunakan data foF2 dari Balai Pengamatan Antariksa dan Atmosfer (BPAA) Sumedang (SMD; 6,910 LS; 106,830 BT koordinat geografis atau 16,550 LS; 179,950 BT koordinat magnet) dan data medan geomagnet dari stasiun Biak (BIK; 1,080 LS; 136,050 BT koordinat geografis atau 9,730 LS; 207,390 BT koordinat magnet) tahun 2000-2001. Hasilnya diperoleh bahwa penetrasi medan listrik dari lintang tinggi ke lintang lebih rendah Indonesia menyebabkan foF2 BPAA Sumedang terganggu. Onset gangguan foF2 BPAA Sumedang mulai terjadi bertepatan dengan EEJ(HBIK-HDRW) mencapai titik minimumnya dengan jeda waktu antara 0 sampai 4 jam sebelum dan sesudah indeks Dst mencapai minimum. Untuk beda waktu 0 sampai 4 jam sesudah indeks Dst mencapai minimum, hasilnya bersesuaian dengan hasil penelitian peneliti sebelumnya. Namun, untuk beda waktu 0 sampai 4 jam sebelum indeks Dst mencapai minimum, hasilnya merupakan temuan berbeda dari hasil mereka.


1999 ◽  
Vol 202 (1) ◽  
pp. 47-53 ◽  
Author(s):  
V.A. Bennett ◽  
O. Kukal ◽  
R.E. Lee

Arctic woollybear caterpillars, Gynaephora groenlandica, had the capacity to rapidly and dramatically increase respiration rates up to fourfold within 12–24 h of feeding and exhibited similar decreases in respiration of 60–85 % in as little as 12 h of starvation. At the peak of their feeding season, the respiration rates of caterpillars also increased significantly with temperature from 0.5 to 22 degreesC for both fed and starved caterpillars (Q10=1-5). Indicative of diapause, late season caterpillars had depressed respiration rates which were less sensitive to temperature changes (Q10 approximately 1.5), while respiration rates for caterpillars that had spun hibernacula were even lower. G. groenlandica did not appear to demonstrate metabolic cold adaptation compared with other temperate lepidopteran larvae. The seasonal capacity to adjust metabolic rate rapidly in response to food consumption and temperature (which can be elevated by basking) may promote the efficient acquisition of energy during the brief (1 month) summer growing and feeding season, while conserving energy by entering diapause when conditions are less favorable. These adaptations, along with their long 15–20 year life cycle and the retention of freeze tolerance year-round, promote the survival of G. groenlandica in this harsh polar environment.


Sign in / Sign up

Export Citation Format

Share Document