scholarly journals Stable reprogramming of brain transcription profiles by the early social environment in a cooperatively breeding fish

2013 ◽  
Vol 280 (1753) ◽  
pp. 20122605 ◽  
Author(s):  
Barbara Taborsky ◽  
Linda Tschirren ◽  
Clémence Meunier ◽  
Nadia Aubin-Horth

Adult social behaviour can be persistently modified by early-life social experience. In rodents, such effects are induced by tactile maternal stimulation resulting in neuroendocrine modifications of the hypothalamic–pituitary–adrenal axis involved in stress responsiveness. Whether similar long-term alterations can occur in the hypothalamic–pituitary–interrenal (HPI) axis of poikilothermic vertebrates is unknown. We compared the expression of four genes of the HPI axis in adults of the cooperatively breeding cichlid Neolamprologus pulcher , which had been exposed to two early-life social treatments 1.5 years prior to brain sampling. Fish reared with parents and siblings had less brain expression of corticotropin-releasing factor and of the functional homologue of the mammalian glucocorticoid receptor (GR1) than individuals reared with same-age siblings only. Expression of the mineralocorticoid receptors (MR) did not differ between treatments, but the MR/GR1 expression ratio was markedly higher in fish reared with parents and siblings. Thus, we show here that early social experience can alter the programming of the stress axis in poikilothermic vertebrates, suggesting that this mechanism is deeply conserved within vertebrates. Moreover, we show for the first time that reprogramming of the stress axis of a vertebrate can be induced without tactile stimulation by parents.

2019 ◽  
Author(s):  
Tamsyn M. Uren Webster ◽  
Deiene Rodriguez-Barreto ◽  
Giovanni Castaldo ◽  
John Taylor ◽  
Peter Gough ◽  
...  

AbstractMicrobial communities associated with the gut and the skin are strongly influenced by environmental factors, and can rapidly adapt to change. Historical processes may also affect the microbiome. In particular, variation in microbial colonisation in early life has the potential to induce lasting effects on microbial assemblages. However, little is known about the relative extent of microbiome plasticity or the importance of historical colonisation effects following environmental change, especially for non-mammalian species. To investigate this we performed a reciprocal translocation of Atlantic salmon between captive and semi-natural conditions. Wild and hatchery-reared fry were transferred to three common garden experimental environments for six weeks: standard hatchery conditions, hatchery conditions with an enriched diet, and simulated wild conditions. We characterised the faecal and skin microbiome of individual fish before and after the environmental translocation, using a BACI (before-after-control-impact) design. We found evidence of extensive plasticity in both gut and skin microbiota, with the greatest changes in alpha and beta diversity associated with the largest changes in environment and diet. Microbiome richness and diversity were entirely determined by environment, with no detectable historical effects of fish origin. Microbiome structure was also strongly influenced by current environmental conditions but, for the first time in fish, we also found evidence of colonisation history, including a number of OTUs characteristic of captive rearing. These results may have important implications for host adaptation to local selective pressures, and also highlight how conditions during early life can have a long-term influence on the microbiome and, potentially, host health.


1970 ◽  
Vol 19 (1) ◽  
pp. 89-99
Author(s):  
K. Choudhary ◽  
M. Singh ◽  
M. S. Rathore ◽  
N. S. Shekhawat

This long term study demonstrates for the first time that it is possible to propagate embryogenic Vigna trilobata and to subsequently initiate the differentiation of embryos into complete plantlets. Initiation of callus was possible on 2,4-D. Somatic embryos differentiated on modified MS basal nutrient medium with 1.0 mg/l  of 2,4-D and 0.5 mg/l  of Kn. Sustained cell division resulted in globular and heart shape stages of somatic embryos. Transfer of embryos on to a fresh modified MS basal medium with 0.5 mg/l of Kn and 0.5 mg/l of GA3 helped them to attain maturation and germination. However, the propagation of cells, as well as the differentiation of embryos, were inhibited by a continuous application of these growth regulators. For this reason, a long period on medium lacking these growth regulators was necessary before the differentiation of embryos occurred again. The consequences for improving the propagation of embryogenic cultures in Vigna species are discussed. Key words: Pasture  legume, Vigna trilobata, Globular, Heart shape, somatic embryogenesis D.O.I. 10.3329/ptcb.v19i1.4990 Plant Tissue Cult. & Biotech. 19(1): 89-99, 2009 (June)


2017 ◽  
pp. 34-47
Author(s):  
Hoi Le Quoc ◽  
Nam Pham Xuan ◽  
Tuan Nguyen Anh

The study was targeted at developing a methodology for constructing a macroeconomic performance index at a provincial level for the first time in Vietnam based on 4 groups of measurements: (i) Economic indicators; (ii) oriented economic indicators; (iii) socio-economic indicators; and (iv) economic - social – institutional indicators. Applying the methodology to the 2011 - 2015 empirical data of all provinces in Vietnam, the research shows that the socio-economic development strategy implemented by those provinces did not provide balanced outcomes between growth and social objectives, sustainability and inclusiveness. Many provinces focused on economic growth at the cost of structural change, equality and institutional transformation. In contrast, many provinces were successful in improving equality but not growth. Those facts threaten the long-term development objectives of the provinces.


Author(s):  
O. D. Golyaeva ◽  
O. V. Kurashev ◽  
S. D. Knyazev ◽  
А. Yu. Bakhotskaya

The main goal of the scientific institution was and remains to improve the assortment of fruit and berry crops for the development of domestic horticulture. Black currant breeding at VNIISPK was started by A.F Tamarova and continued by the doctor of agricultural Sciences T.P.Ogoltsova and doctor of agricultural Sciences S.D. Knyazev. A long-term breeding program has been developed. The main goals of the program are to create black currant cultivars with continuous resistance to diseases, first of all powdery mildew, as wells resistance to pests, i.e. bud mite. As a result of the long-term work, over 40 black currant cultivars have been developed, 14 of them are zoned. Red currant breeding was led by the candidate of agricultural Sciences L.V. Bayanova; since 2001 the work has been continued by the candidate of agricultural Sciences O.D. Golyaeva. ‘Heinemanns Rote Spӓtlese’, the descendant of R. multiflorum Kit., was involved in the red currant breeding for the first time in Russia. On its genetic basis, a series of late maturing cultivars with long and dense racemes was created. At the Institute, in total 21cultivars of red currants have been developed, 13 of them are zoned. At present, red currant cultivars make up 25.5% of the zoned assortment in Russia. The first research on gooseberries was stated by V.P. Semakin and A.F Tamarova; since 1992 the systematic gooseberry breeding has been carried out by the candidate of agricultural Sciences O.V. Kurashev. On the basis of Grossularia robusta, we have created gooseberry forms that are resistant to powdery mildew and leaf spots. These forms are highly productive, weakly thorned, having bush habit suitable for mechanized harvest. The result of breeding activities was the transfer of 6 gooseberry cultivars to State agricultural testing: ‘Solnechny Zaychik’, ‘Nekrasovsky’, ‘Yupiter’, ‘Zemlianichny’, ‘Moryachok’ and ‘Discovery’.


Author(s):  
Maria Fitzgerald ◽  
Michael W. Salter

The influence of development and sex on pain perception has long been recognized but only recently has it become clear that this is due to specific differences in underlying pain neurobiology. This chapter summarizes the evidence for mechanistic differences in male and female pain biology and for functional changes in pain pathways through infancy, adolescence, and adulthood. It describes how both developmental age and sex determine peripheral nociception, spinal and brainstem processing, brain networks, and neuroimmune pathways in pain. Finally, the chapter discusses emerging evidence for interactions between sex and development and the importance of sex in the short- and long-term effects of early life pain.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 451
Author(s):  
Marta Kubiak ◽  
Janine Mayer ◽  
Ingo Kampen ◽  
Carsten Schilde ◽  
Rebekka Biedendieck

In biocatalytic processes, the use of free enzymes is often limited due to the lack of long-term stability and reusability. To counteract this, enzymes can be crystallized and then immobilized, generating cross-linked enzyme crystals (CLECs). As mechanical stability and activity of CLECs are crucial, different penicillin G acylases (PGAs) from Gram-positive organisms have proven to be promising candidates for industrial production of new semisynthetic antibiotics, which can be crystallized and cross-linked to characterize the resulting CLECs regarding their mechanical and catalytic properties. The greatest hardness and Young’s modulus determined by indentation with an atomic force microscope were observed for CLECs of Bacillus species FJAT-PGA CLECs (26 MPa/1450 MPa), followed by BmPGA (Priestia megaterium PGA, 23 MPa/1170 MPa) and BtPGA CLECs (Bacillus thermotolerans PGA, 11 MPa/614 MPa). In addition, FJAT- and BtPGA CLECs showed up to 20-fold higher volumetric activities compared to BmPGA CLECs. Correlation to structural characteristics indicated that a high solvent content and low number of cross-linking residues might lead to reduced stability. Furthermore, activity seems to be restricted by small water channels due to severe diffusion limitations. To the best of our knowledge, we show for the first time in this study that the entire process chain for the characterization of diverse industrially relevant enzymes can be performed at the microliter scale to discover the most important relationships and limitations.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A11-A12
Author(s):  
Carolyn Jones ◽  
Randall Olson ◽  
Alex Chau ◽  
Peyton Wickham ◽  
Ryan Leriche ◽  
...  

Abstract Introduction Glutamate concentrations in the cortex fluctuate with the sleep wake cycle in both rodents and humans. Altered glutamatergic signaling, as well as the early life onset of sleep disturbances have been implicated in neurodevelopmental disorders such as autism spectrum disorder. In order to study how sleep modulates glutamate activity in brain regions relevant to social behavior and development, we disrupted sleep in the socially monogamous prairie vole (Microtus ochrogaster) rodent species and quantified markers of glutamate neurotransmission within the prefrontal cortex, an area of the brain responsible for advanced cognition and complex social behaviors. Methods Male and female prairie voles were sleep disrupted using an orbital shaker to deliver automated gentle cage agitation at continuous intervals. Sleep was measured using EEG/EMG signals and paired with real time glutamate concentrations in the prefrontal cortex using an amperometric glutamate biosensor. This same method of sleep disruption was applied early in development (postnatal days 14–21) and the long term effects on brain development were quantified by examining glutamatergic synapses in adulthood. Results Consistent with previous research in rats, glutamate concentration in the prefrontal cortex increased during periods of wake in the prairie vole. Sleep disruption using the orbital shaker method resulted in brief cortical arousals and reduced time in REM sleep. When applied during development, early life sleep disruption resulted in long-term changes in both pre- and post-synaptic components of glutamatergic synapses in the prairie vole prefrontal cortex including increased density of immature spines. Conclusion In the prairie vole rodent model, sleep disruption on an orbital shaker produces a sleep, behavioral, and neurological phenotype that mirrors aspects of autism spectrum disorder including altered features of excitatory neurotransmission within the prefrontal cortex. Studies using this method of sleep disruption combined with real time biosensors for excitatory neurotransmitters will enhance our understanding of modifiable risk factors, such as sleep, that contribute to the altered development of glutamatergic synapses in the brain and their relationship to social behavior. Support (if any) NSF #1926818, VA CDA #IK2 BX002712, Portland VA Research Foundation, NIH NHLBI 5T32HL083808-10, VA Merit Review #I01BX001643


Sign in / Sign up

Export Citation Format

Share Document