scholarly journals Climate, not Aboriginal landscape burning, controlled the historical demography and distribution of fire-sensitive conifer populations across Australia

2013 ◽  
Vol 280 (1773) ◽  
pp. 20132182 ◽  
Author(s):  
Shota Sakaguchi ◽  
David M. J. S. Bowman ◽  
Lynda D. Prior ◽  
Michael D. Crisp ◽  
Celeste C. Linde ◽  
...  

Climate and fire are the key environmental factors that shape the distribution and demography of plant populations in Australia. Because of limited palaeoecological records in this arid continent, however, it is unclear as to which factor impacted vegetation more strongly, and what were the roles of fire regime changes owing to human activity and megafaunal extinction (since ca 50 kya). To address these questions, we analysed historical genetic, demographic and distributional changes in a widespread conifer species complex that paradoxically grows in fire-prone regions, yet is very sensitive to fire. Genetic demographic analysis showed that the arid populations experienced strong bottlenecks, consistent with range contractions during the Last Glacial Maximum ( ca 20 kya) predicted by species distribution models. In southern temperate regions, the population sizes were estimated to have been mostly stable, followed by some expansion coinciding with climate amelioration at the end of the last glacial period. By contrast, in the flammable tropical savannahs, where fire risk is the highest, demographic analysis failed to detect significant population bottlenecks. Collectively, these results suggest that the impact of climate change overwhelmed any modifications to fire regimes by Aboriginal landscape burning and megafaunal extinction, a finding that probably also applies to other fire-prone vegetation across Australia.

Fire ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 42 ◽  
Author(s):  
Roos ◽  
Williamson ◽  
Bowman

Paleofire studies frequently discount the impact of human activities in past fire regimes. Globally, we know that a common pattern of anthropogenic burning regimes is to burn many small patches at high frequency, thereby generating landscape heterogeneity. Is this type of anthropogenic pyrodiversity necessarily obscured in paleofire records because of fundamental limitations of those records? We evaluate this with a cellular automata model designed to replicate different fire regimes with identical fire rotations but different fire frequencies and patchiness. Our results indicate that high frequency patch burning can be identified in tree-ring records at relatively modest sampling intensities. However, standard methods that filter out fires represented by few trees systematically biases the records against patch burning. In simulated fire regime shifts, fading records, sample size, and the contrast between the shifted fire regimes all interact to make statistical identification of regime shifts challenging without other information. Recent studies indicate that integration of information from history, archaeology, or anthropology and paleofire data generate the most reliable inferences of anthropogenic patch burning and fire regime changes associated with cultural changes.


2006 ◽  
Vol 15 (3) ◽  
pp. 433 ◽  
Author(s):  
William L. Baker

Reconstructing fire regimes of the past can provide a valuable frame of reference for understanding the impact of human land uses on contemporary fire and forest structure, but methods for reconstructing past fire regimes are under re-evaluation. In the present article, a common method of characterizing surface fire regimes, using composite fire intervals from fire scars, is shown to significantly underestimate the length of the fire rotation and population mean fire interval in Grand Canyon landscapes where these parameters are known. Also, the evidence and interpretation that past high-severity fire was uncommon in ponderosa pine landscapes in Grand Canyon National Park are challenged. Together, these two concerns mean that an alternative characterization of the fire regime, which has very different implications, cannot be excluded. Management aimed at lowering fire risk, as a means of restoration, does not presently have a sound scientific basis, if it uses the composite fire interval as a measure of the fire regime or is based on fire history research that lacks adequate analysis of past high-severity fire.


2018 ◽  
Vol 35 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Kouamé Fulgence Koffi ◽  
Aya Brigitte N’Dri ◽  
Jean-Christophe Lata ◽  
Souleymane Konaté ◽  
Tharaniya Srikanthasamy ◽  
...  

AbstractThis study assesses the impact of four fire treatments applied yearly over 3 y, i.e. early fire, mid-season fire, late fire and no fire treatments, on the grass communities of Lamto savanna, Ivory Coast. We describe communities of perennial tussock grasses on three replicated 5 × 5-m or 10 × 5-m plots of each fire treatment. Tussock density did not vary with fire treatment. The relative abundance of grass species, the circumference of grass tussocks and the probability of having a tussock with a central die-back, varied with fire treatment. Mid-season fire had the highest proportion of tussocks with a central die-back while the late fire had the smallest tussocks. Tussock density, circumference, relative abundance and probability of having a central die-back varied with species. Andropogon canaliculatus and Hyparrhenia diplandra were the most abundant of the nine grass species. They had the largest tussocks and the highest proportion of tussock with a central die-back. Loudetia simplex was the third most abundant species but was very rare in no fire plots. The distribution of tussock circumferences was right skewed and dominated by small tussocks. The proportion of the tussocks with a central die-back strongly increased with circumference, which could lead to tussock fragmentation. Taken together, this study suggests that fire regimes impact grass demography and that this impact depends on grass species and tussock size.


2010 ◽  
Vol 29 (21-22) ◽  
pp. 2918-2930 ◽  
Author(s):  
A.-L. Daniau ◽  
S.P. Harrison ◽  
P.J. Bartlein

2012 ◽  
Vol 6 (6) ◽  
pp. 4897-4938 ◽  
Author(s):  
S. Charbit ◽  
C. Dumas ◽  
M. Kageyama ◽  
D. M. Roche ◽  
C. Ritz

Abstract. Since the original formulation of the positive-degree-day (PDD) method, different PDD calibrations have been proposed in the literature in response to the increasing number of observations. Although these formulations provide a satisfactory description of the present-day Greenland geometry, they have not all been tested for paleo ice sheets. Using the climate-ice sheet model CLIMBER-GRISLI coupled with different PDD models, we evaluate how the parameterization of the ablation may affect the evolution of Northern Hemisphere ice sheets in the transient simulations of the last glacial cycle. Results from fully coupled simulations are compared to time-slice experiments carried out at different key periods of the last glacial period. We find large differences in the simulated ice sheets according to the chosen PDD model. These differences occur as soon as the onset of glaciation, therefore affecting the subsequent evolution of the ice system. To further investigate how the PDD method controls this evolution, special attention is given to the role of each PDD parameter. We show that glacial inception is critically dependent on the representation of the impact of the temperature variability from the daily to the inter-annual time scale, whose effect is modulated by the refreezing scheme. Finally, an additional set of sensitivity experiments has been carried out to assess the relative importance of melt processes with respect to initial ice sheet configuration in the construction and the evolution of past Northern Hemisphere ice sheets. Our analysis reveals that the impacts of the initial ice sheet condition may range from quite negligible to explaining about half of the LGM ice volume depending on the representation of stochastic temperature variations which remain the main driver of the evolution of the ice system.


2007 ◽  
Vol 363 (1501) ◽  
pp. 2351-2356 ◽  
Author(s):  
Anders Granström ◽  
Mats Niklasson

Fire, being both a natural and cultural phenomenon, presents problems in disentangling the historical effect of humans from that of climate change. Here, we investigate the potential impact of humans on boreal fire regimes from a perspective of fuels, ignitions and culture. Two ways for a low technology culture to impact the fire regime are as follows: (i) by altering the number of ignitions and their spatial distribution and timing and (ii) by hindering fire spread. Different cultures should be expected to have quite different impacts on the fire regimes. In northern Fennoscandia, there is evidence for fire regime changes associated with the following: a reindeer herding culture associated with few ignitions above the natural; an era of cattle husbandry with dramatically increased ignitions and somewhat higher fire frequency; and a timber exploitation era with decreasing fire sizes and diminishing fire frequency. In other regions of the boreal zone, such schemes can look quite different, but we suggest that a close look at the resource extraction and land use of different cultures should be part of any analysis of past fire regimes.


2020 ◽  
Author(s):  
Sophie-Berenice Wilmes ◽  
Mattias Green ◽  
Andreas Schmittner

<p>The global mean sea-level decrease of 120 – 130 m during the Last Glacial Maximum (LGM; 26 – 19 kyr BP) is thought to have substantially altered semidiurnal tidal dynamics in the glacial North Atlantic. This more than doubled global open ocean tidal dissipation in comparison to present day and increased the amount of energy available for diapycnal mixing which is important for driving the global meridional overturning circulation. Reconstructions of the glacial ocean have generally suggested a more sluggish Atlantic meridional overturning circulation (AMOC) during the LGM together with weaker mixing. Here, we investigate the impact of tidal dissipation changes on the LGM AMOC and the carbon cycle using the intermediate complexity ocean model UVic coupled to the biogeochemistry model MOBI forced with three different LGM dissipation estimates. The simulations are constrained with LGM δ<sup>13</sup>C and radiocarbon data from sediments. Our results suggest that our simulations, as previously inferred, most closely agree with a weakened LGM AMOC (8 – 9 Sv), and importantly, that the agreement is consistent with increased LGM tidal mixing. These results firstly imply that a weakened AMOC state can occur with stronger tidal mixing without hampering the agreement with the sediment isotope data. Secondly, this work highlights the importance of considering tidal dissipation changes when modelling the paleo-ocean.</p>


2000 ◽  
Vol 54 (3) ◽  
pp. 394-403 ◽  
Author(s):  
Marı́a Fernanda Sánchez Goñi ◽  
Jean-Louis Turon ◽  
Frédérique Eynaud ◽  
Sandra Gendreau

Pollen, foraminifer, dinocyst, and coarse lithic high-resolution analyses and δ18O measurements have been carried out for the last-glacial section of marine core MD95-2042 located near the southwestern margin of the Iberian Peninsula. The pollen data indicate a high frequency of vegetational changes on the adjacent continent during this period, suggesting a climatic variability very similar to that of the Dansgaard-Oeschger cycles recorded by the Greenland ice cores. The detailed direct correlation of the terrestrial and marine proxy data from core MD95-2042 indicates a three-phase pattern of Heinrich events in land and ocean environments. The first and last phases of the H5 and H4 events are characterized by a mild and humid climate in southwestern Europe, probably associated with the European origin of the ice-rafted detritus. The middle phase exhibits a cold and dry climate in Iberia linked with the maximum input of ice-rafted detritus. This phase seems to correspond with the Laurentide ice-sheet surges. Between the Heinrich events, several cold and dry periods on land are correlated with stades of the Dansgaard-Oeschger cycles. The impact of the Dansgaard-Oeschger stades in southwestern Europe seems to be preferentially connected to the cold winter air masses reaching this mid-latitude region.


2017 ◽  
Author(s):  
Nagarjun Vijay ◽  
Chungoo Park ◽  
Jooseong Oh ◽  
Soyeong Jin ◽  
Elizabeth Kern ◽  
...  

ABSTRACTPopulation genomic data can be used to infer historical effective population sizes (Ne), which help study the impact of past climate changes on biodiversity. Previous genome sequencing of one individual of the common bottlenose dolphin Tursiops truncatus revealed an unusual, sharp rise in Ne during the last glacial, raising questions about the reliability, generality, underlying cause, and biological implication of this finding. Here we first verify this result by additional sampling of T. truncatus. We then sequence and analyze the genomes of its close relative, the Indo-Pacific bottlenose dolphin T. aduncus. The two species exhibit contrasting demographic changes in the last glacial, likely through actual changes in population size and/or alterations in the level of gene flow among populations. Our findings demonstrate that even closely related species can have drastically different responses to climatic changes, making predicting the fate of individual species in the ongoing global warming a serious challenge.


2019 ◽  
Vol 15 (3) ◽  
pp. 1039-1062
Author(s):  
Krista M. S. Kemppinen ◽  
Philip B. Holden ◽  
Neil R. Edwards ◽  
Andy Ridgwell ◽  
Andrew D. Friend

Abstract. During the Last Glacial Maximum (LGM), atmospheric CO2 was around 90 ppmv lower than during the pre-industrial period. The reasons for this decrease are most often elucidated through factorial experiments testing the impact of individual mechanisms. Due to uncertainty in our understanding of the real system, however, the different models used to conduct the experiments inevitably take on different parameter values and different structures. In this paper, the objective is therefore to take an uncertainty-based approach to investigating the LGM CO2 drop by simulating it with a large ensemble of parameter sets, designed to allow for a wide range of large-scale feedback response strengths. Our aim is not to definitely explain the causes of the CO2 drop but rather explore the range of possible responses. We find that the LGM CO2 decrease tends to predominantly be associated with decreasing sea surface temperatures (SSTs), increasing sea ice area, a weakening of the Atlantic Meridional Overturning Circulation (AMOC), a strengthening of the Antarctic Bottom Water (AABW) cell in the Atlantic Ocean, a decreasing ocean biological productivity, an increasing CaCO3 weathering flux and an increasing deep-sea CaCO3 burial flux. The majority of our simulations also predict an increase in terrestrial carbon, coupled with a decrease in ocean and increase in lithospheric carbon. We attribute the increase in terrestrial carbon to a slower soil respiration rate, as well as the preservation rather than destruction of carbon by the LGM ice sheets. An initial comparison of these dominant changes with observations and paleoproxies other than carbon isotope and oxygen data (not evaluated directly in this study) suggests broad agreement. However, we advise more detailed comparisons in the future, and also note that, conceptually at least, our results can only be reconciled with carbon isotope and oxygen data if additional processes not included in our model are brought into play.


Sign in / Sign up

Export Citation Format

Share Document