scholarly journals Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops

2014 ◽  
Vol 281 (1793) ◽  
pp. 20141429 ◽  
Author(s):  
Rubén Milla ◽  
Javier Morente-López ◽  
J. Miguel Alonso-Rodrigo ◽  
Nieves Martín-Robles ◽  
F. Stuart Chapin

Trait-based ecology predicts that evolution in high-resource agricultural environments should select for suites of traits that enable fast resource acquisition and rapid canopy closure. However, crop breeding targets specific agronomic attributes rather than broad trait syndromes. Breeding for specific traits, together with evolution in high-resource environments, might lead to reduced phenotypic integration, according to predictions from the ecological literature. We provide the first comprehensive test of these hypotheses, based on a trait-screening programme of 30 herbaceous crops and their wild progenitors. During crop evolution plants became larger, which enabled them to compete more effectively for light, but they had poorly integrated phenotypes. In a subset of six herbaceous crop species investigated in greater depth, competitiveness for light increased during early plant domestication, whereas diminished phenotypic integration occurred later during crop improvement. Mass-specific leaf and root traits relevant to resource-use strategies (e.g. specific leaf area or tissue density of fine roots) changed during crop evolution, but in diverse and contrasting directions and magnitudes, depending on the crop species. Reductions in phenotypic integration and overinvestment in traits involved in competition for light may affect the chances of upgrading modern herbaceous crops to face current climatic and food security challenges.

2021 ◽  
Author(s):  
Z. Homulle ◽  
T. S. George ◽  
A. J. Karley

Abstract Background The potential benefits of intercropping are manifold and have been repeatedly demonstrated. Intercropping has the potential to create more productive and resilient agroecosystems, by improving land utilisation, yield and yield stability, soil quality, and pest, disease and weed suppression. Despite these potential benefits, significant gaps remain in the understanding of ecological mechanisms that govern the outcomes when crop species are grown together. A major part of plant-plant interactions takes place belowground and these are often overlooked. Scope This review synthesises current evidence for belowground plant-plant interactions of competition, niche differentiation and facilitation, with the aim of identifying root traits that influence the processes contributing to enhanced performance of intercrops compared with monocultures. We identify a suite of potentially complementary root traits for maximising the benefits of intercropping. These traits underpin improved soil exploration, more efficient resource use, and suppression of soil-borne pathogens and pests in intercrops. Conclusion This review brings together understanding of the mechanisms underpinning interactions between intercropped roots, and how root traits and their plasticity can promote positive outcomes. Root trait ‘ideotypes’ for intercropped partners are identified that could be selected for crop improvement. We highlight the importance of examining belowground interactions and consider both spatial and temporal distribution of roots and rhizosphere mechanisms that aid complementarity through niche differentiation and facilitation. Breeding of crop ideotypes with specific beneficial root traits, combined with considerations for optimal spatio-temporal arrangement and ratios of component crops, are essential next steps to promote the adoption of intercropping as a sustainable farming practice.


Author(s):  
Rajanikanth Govindarajulu ◽  
Ashley N Hostetler ◽  
Yuguo Xiao ◽  
Srinivasa R Chaluvadi ◽  
Margarita Mauro-Herrera ◽  
...  

Abstract Phenotypes such as branching, photoperiod sensitivity, and height were modified during plant domestication and crop improvement. Here, we perform quantitative trait locus (QTL) mapping of these and other agronomic traits in a recombinant inbred line (RIL) population derived from an interspecific cross between Sorghum propinquum and Sorghum bicolor inbred Tx7000. Using low-coverage Illumina sequencing and a bin-mapping approach, we generated ∼1920 bin markers spanning ∼875 cM. Phenotyping data were collected and analyzed from two field locations and one greenhouse experiment for six agronomic traits, thereby identifying a total of 30 QTL. Many of these QTL were penetrant across environments and co-mapped with major QTL identified in other studies. Other QTL uncovered new genomic regions associated with these traits, and some of these were environment-specific in their action. To further dissect the genetic underpinnings of tillering, we complemented QTL analysis with transcriptomics, identifying 6189 genes that were differentially expressed during tiller bud elongation. We identified genes such as Dormancy Associated Protein 1 (DRM1) in addition to various transcription factors that are differentially expressed in comparisons of dormant to elongating tiller buds and lie within tillering QTL, suggesting that these genes are key regulators of tiller elongation in sorghum. Our study demonstrates the usefulness of this RIL population in detecting domestication and improvement-associated genes in sorghum, thus providing a valuable resource for genetic investigation and improvement to the sorghum community.


Author(s):  
Rujing Yang ◽  
Xiang Gong ◽  
Xiaokang Hu ◽  
Yawen Hu ◽  
Jianmeng Feng

Abstract Species’ range and niche play key roles in understanding ecological and biogeographical patterns, especially in projecting global biotic homogenization and potential distribution patterns of species under global change scenarios. However, few studies have investigated the ability of crop cultivation to influence potential range sizes and niche shifts of species. Wheat and its wild progenitors share the same origin and evolutionary history, and thus provide an excellent system to explore this topic. Using ensembled ecological niche models and niche dynamic models, we studied the potential range sizes of wheat and its wild progenitors, as well as their niche dynamics. Our results showed that wheat had larger range size and niche breadth than its wild progenitors, suggesting that wheat cultivation is a more powerful driver of range and niche expansion than natural niche evolution. Additionally, wheat and its wild progenitors occupied different niche positions, and the former did not conserve the niches inherited from the latter, implying that wheat cultivation considerably induces niche shifts. The niche dynamics between wheat and its wild progenitors were not only closely associated with cultivation but were also modified by the niche conservatism of its wild progenitors. In contrast to most invasive plants, wheat, as a global staple crop species, did not conserve the niche space inherited from its wild progenitors, suggesting that compared with most plant invasions, cultivation may have a stronger effect on niche shifts. Therefore, global niche shifts induced by crop cultivation need much more attention, though the underlying mechanisms require further study.


Geoderma ◽  
2022 ◽  
Vol 409 ◽  
pp. 115642
Author(s):  
Matthieu Forster ◽  
Carolina Ugarte ◽  
Mathieu Lamandé ◽  
Michel-Pierre Faucon

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1697
Author(s):  
Matthieu Forster ◽  
Carolina Ugarte ◽  
Mathieu Lamandé ◽  
Michel-Pierre Faucon

Compaction due to traffic is a major threat to soil functions and ecosystem services as it decreases both soil pore volume and continuity. The effects of roots on soil structure have previously been investigated as a solution to alleviate compaction. Roots have been identified as a major actor in soil reinforcement and aggregation through the enhancement of soil microbial activity. However, we still know little about the root’s potential to protect soil from compaction during traffic. The objective of this study was to investigate the relationships between root traits and soil physical properties directly after traffic. Twelve crop species with contrasting root traits were grown as monocultures and trafficked with a tractor pulling a trailer. Root traits, soil bulk density, water content and specific air permeability were measured after traffic. The results showed a positive correlation between the specific air permeability and root length density and a negative correlation was found between bulk density and the root carbon/nitrogen ratio. This study provides first insight into how root traits could help reduce the consequences of soil compaction on soil functions. Further studies are needed to identify the most efficient plant species for mitigation of soil compaction during traffic in the field.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lesley G. Campbell ◽  
Kristen Peach ◽  
Sydney B. Wizenberg

AbstractSome economically important crop species are dioecious, producing pollen and ovules on distinct, unisexual, individuals. On-the-spot diagnosis of sex is important to breeders and farmers for crop improvement and maximizing yield, yet diagnostic tools at the seedling stage are understudied and lack a scientific basis. Understanding sexual dimorphism in juvenile plants may provide key ecological, evolutionary and economic insights into dioecious plant species in addition to improving the process of crop cultivation. To address this gap in the literature, we asked: can we reliably differentiate males, females, and co-sexual individuals based on seedling morphology in Cannabis sativa, and do the traits used to distinguish sex at this stage vary between genotypes? To answer these questions, we collected data on phenotypic traits of 112 C. sativa plants (50 female, 52 male, 10 co-sexuals) from two hemp cultivars (CFX-1, CFX-2) during the second week of vegetative growth and used ANOVAs to compare morphology among sexes. We found males grew significantly longer hypocotyls than females by week 2, but this difference depended on the cultivar investigated. Preliminary evidence suggests that co-sexual plants may be distinguished from male and female plants using short hypocotyl length and seedling height, although this relationship requires more study since sample sizes of co-sexual plants were small. In one of the cultivars, two-week old male plants tend to produce longer hypocotyls than other plants, which may help to identify these plants prior to anthesis. We call for increased research effort on co-sexual plants, given their heavy economic cost in industrial contexts and rare mention in the literature. Our preliminary data suggests that short hypocotyl length may be an indicator of co-sexuality. These results are the first steps towards developing diagnostic tools for predicting sex using vegetative morphology in dioecious species and understanding how sexual dimorphism influences phenotype preceding sexual maturity.


2005 ◽  
Vol 3 (3) ◽  
pp. 373-384 ◽  
Author(s):  
Tania Carolina Camacho Villa ◽  
Nigel Maxted ◽  
Maria Scholten ◽  
Brian Ford-Lloyd

Awareness of the need for biodiversity conservation is now universally accepted, but most often recent conservation activities have focused on wild species. Crop species and the diversity between and within them has significant socioeconomic as well as heritage value. The bulk of genetic diversity in domesticated species is located in traditional varieties maintained by traditional farming systems. These traditional varieties, commonly referred to as landraces, are severely threatened by genetic extinction primarily due to their replacement by modern genetically uniform varieties. The conservation of landrace diversity has been hindered in part by the lack of an accepted definition to define the entity universally recognized as landraces. Without a definition it would be impossible to prepare an inventory and without an inventory changes in landrace constituency could not be recognized over time. Therefore, based on a literature review, workshop discussion and interviews with key informants, common characteristics of landraces were identified, such as: historical origin, high genetic diversity, local genetic adaptation, recognizable identity, lack of formal genetic improvement, and whether associated with traditional farming systems. However, although these characteristics are commonly present they are not always all present for any individual landrace; several crop-specific exceptions were noted relating to crop propagation method (sexual or asexual), breeding system (self-fertilized or cross-fertilized species), length of formal crop improvement, seed management (selection or random propagation) and use. This paper discusses the characteristics that generally constitute a landrace, reviews the exceptions to these characteristics and provides a working definition of a landrace. The working definition proposed is as follows: ‘a landrace is a dynamic population(s) of a cultivated plant that has historical origin, distinct identity and lacks formal crop improvement, as well as often being genetically diverse, locally adapted and associated with traditional farming systems’.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 208
Author(s):  
Andrew Borrell ◽  
Barbara George-Jaeggli ◽  
Erik van Oosterom ◽  
Graeme Hammer ◽  
Emma Mace ◽  
...  

Plants are sessile organisms requiring mechanisms that enable them to balance water supply and demand in dry environments. Demand (D) is largely driven by canopy size (transpirational leaf area), although differences in transpiration per unit leaf area also occur. Supply (S) is primarily driven by water capture via the root system. Drought stress can be defined as the situation where supply of water cannot meet demand of the crop, such that water availability is the limiting factor for biomass accumulation. Under such conditions, plants will need to reduce D in order to meet the limited S, access more water to increase S, or increase the efficiency with which water is utilised. We used sorghum, a model C4 crop species, to demonstrate how the stay-green trait can modulate canopy development and root architecture to enhance adaptation. We show how stay-green positively impacts the balance between S and D under post-flowering drought, including insights at the molecular level. We provide examples of how canopy and root traits impact the S/D balance in other cereals under water limitation. For example, on the supply side, the extent of genetic variation for root angle (RA) has been evaluated in sorghum, wheat and barley, and genomic regions associated with RA have been mapped. Furthermore, the relationship between RA and grain yield has been explored in barley and sorghum field trials. The capacity to manipulate components of S and D to optimise the S/D balance should assist crop improvement programs to develop enhanced ideotypes for dry environments.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1255 ◽  
Author(s):  
Richard Dormatey ◽  
Chao Sun ◽  
Kazim Ali ◽  
Jeffrey A. Coulter ◽  
Zhenzhen Bi ◽  
...  

Sustainable agricultural production is endangered by several ecological factors, such as drought, extreme temperatures, excessive salts, parasitic ailments, and insect pest infestation. These challenging environmental factors may have adverse effects on future agriculture production in many countries. In modern agriculture, conventional crop-breeding techniques alone are inadequate for achieving the increasing population’s food demand on a sustainable basis. The advancement of molecular genetics and related technologies are promising tools for the selection of new crop species. Gene pyramiding through marker-assisted selection (MAS) and other techniques have accelerated the development of durable resistant/tolerant lines with high accuracy in the shortest period of time for agricultural sustainability. Gene stacking has not been fully utilized for biotic stress resistance development and quality improvement in most of the major cultivated crops. This review emphasizes on gene pyramiding techniques that are being successfully deployed in modern agriculture for improving crop tolerance to biotic and abiotic stresses for sustainable crop improvement.


Sign in / Sign up

Export Citation Format

Share Document