scholarly journals Enhanced problem-solving ability as an adaptation to urban environments in house mice

2021 ◽  
Vol 288 (1945) ◽  
pp. 20202504
Author(s):  
Lara Vrbanec ◽  
Vanja Matijević ◽  
Anja Guenther

Humans have a large impact on the distribution and abundance of animal species worldwide. The ecological effects of human-altered environments are being increasingly recognized and understood, but their effects on evolution are largely unknown. Enhanced cognitive abilities and the ability to innovate have been suggested as crucial traits for thriving in human-altered habitats. We tested if house mice ( Mus musculus ) subspecies have evolved enhanced innovative problem-solving abilities throughout their commensal lives with humans. The time that subspecies lived commensally with humans ranges between approximately 3000 years to more than 11 000 years, thus providing an excellent example of human–animal coexistence. In addition, we tested whether differences in problem-solving were mediated by differences in object and place exploration, motivation, persistence or inhibitory control. We found that populations of subspecies living commensally the longest excelled in problem-solving across seven food-extraction tasks over subspecies living commensally short or intermediate times. These differences were not mediated by exploration, motivation, persistence or inhibitory control suggesting that subspecies have evolved better cognitive abilities when living commensally in urban environments. This suggests that the ability to problem-solve may be an important trait promoting prosperity in human-altered environments.

2020 ◽  
Vol 375 (1811) ◽  
pp. 20190617 ◽  
Author(s):  
Eva-Maria Rathke ◽  
Julia Fischer

Across the lifespan, the performance in problem-solving tasks varies strongly, owing to age-related variation in cognitive abilities as well as the motivation to engage in a task. Non-human primates provide an evolutionary perspective on human cognitive and motivational ageing, as they lack an insight into their own limited lifetime, and ageing trajectories are not affected by customs and societal norms. To test age-related variation in inhibitory control, cognitive flexibility and persistence, we presented Barbary macaques ( Macaca sylvanus ), living at La Forêt des Singes in Rocamadour (France), with three problem-solving tasks. We conducted 297 trials with 143 subjects aged 2–30 years. We found no effect of age on success and latency to succeed in the inhibitory control task. In the cognitive flexibility task, 21 out of 99 monkeys were able to switch their strategy, but there was no evidence for an effect of age. Yet, the persistence in the motivation task as well as the overall likelihood to participate in any of the tasks declined with increasing age. These results suggest that motivation declines earlier than the cognitive abilities assessed in this study, corroborating the notion that non-human primates and humans show similar changes in motivation in old age. This article is part of the theme issue ‘Evolution of the primate ageing process'.


Paleobiology ◽  
1988 ◽  
Vol 14 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Rob Hoffman

Seven taxa of raptorial birds were experimentally fed a controlled sample of 50 house mice (Mus musculus). Bones recovered from the pellets were examined for interspecies variability in preservation to assess the potential contribution of specific raptors to patterning in fossil assemblages. Quantitative analyses demonstrate that patterns in bone fragmentation may assist in the identification of particular raptor species as depositional agents in small mammal assemblages.


2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
André Kretzschmar ◽  
Stephan Nebe

In order to investigate the nature of complex problem solving (CPS) within the nomological network of cognitive abilities, few studies have simultantiously considered working memory and intelligence, and results are inconsistent. The Brunswik symmetry principle was recently discussed as a possible explanation for the inconsistent findings because the operationalizations differed greatly between the studies. Following this assumption, 16 different combinations of operationalizations of working memory and fluid reasoning were examined in the present study (N = 152). Based on structural equation modeling with single-indicator latent variables (i.e., corrected for measurement error), it was found that working memory incrementally explained CPS variance above and beyond fluid reasoning in only 2 of 16 conditions. However, according to the Brunswik symmetry principle, both conditions can be interpreted as an asymmetrical (unfair) comparison, in which working memory was artificially favored over fluid reasoning. We conclude that there is little evidence that working memory plays a unique role in solving complex problems independent of fluid reasoning. Furthermore, the impact of the Brunswik symmetry principle was clearly demonstrated as the explained variance in CPS varied between 4 and 31%, depending on which operationalizations of working memory and fluid reasoning were considered. We argue that future studies investigating the interplay of cognitive abilities will benefit if the Brunswik principle is taken into account.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Megan Phifer-Rixey ◽  
Michael W Nachman

The house mouse, Mus musculus, was established in the early 1900s as one of the first genetic model organisms owing to its short generation time, comparatively large litters, ease of husbandry, and visible phenotypic variants. For these reasons and because they are mammals, house mice are well suited to serve as models for human phenotypes and disease. House mice in the wild consist of at least three distinct subspecies and harbor extensive genetic and phenotypic variation both within and between these subspecies. Wild mice have been used to study a wide range of biological processes, including immunity, cancer, male sterility, adaptive evolution, and non-Mendelian inheritance. Despite the extensive variation that exists among wild mice, classical laboratory strains are derived from a limited set of founders and thus contain only a small subset of this variation. Continued efforts to study wild house mice and to create new inbred strains from wild populations have the potential to strengthen house mice as a model system.


2014 ◽  
Vol 23 (17) ◽  
pp. 4387-4405 ◽  
Author(s):  
Meidong Jing ◽  
Hon-Tsen Yu ◽  
Xiaoxin Bi ◽  
Yung-Chih Lai ◽  
Wei Jiang ◽  
...  

1976 ◽  
Vol 50 (3) ◽  
pp. 197-202 ◽  
Author(s):  
M. Behnke Jerzy

AbstractWild house mice, naturally infected with Aspiculuris tetraptera were segregated according to their weight into six age groups. The prevalence of infection and the mean worm burden of these mice were studied in the different age groups. The overall prevalence of infection was high (57% or more) in all the groups except the youngest. Mice acquired larvae soon after weaning; the highest larval burdens were reached in juvenile mice and the highest mature worm burdens, a group later, in mature mice. Older mice had fewer larvae and fewer mature worms. The mature worm burdens decreased but relatively slower than the larval burdens. It is suggested that either innate or acquired resistance could account for these observations.


2021 ◽  
Vol 30 (5) ◽  
pp. 444-453
Author(s):  
M. Teresa Bajo ◽  
Carlos J. Gómez-Ariza ◽  
Alejandra Marful

Knowledge in memory is vast and not always relevant to the task at hand. Recent views suggest that the human cognitive system has evolved so that it includes goal-driven control mechanisms to regulate the level of activation of specific pieces of knowledge and make distracting or unwanted information in memory less accessible. This operation is primarily directed to facilitate the use of task-relevant knowledge. However, these control processes may also have side effects on performance in a variety of situations when the task at hand partly relies on access to suppressed information. In this article, we show that various types of information to be used in a variety of different contexts (problem solving, decision making based on personal information, language production) may be the target of inhibitory control. We also show that the control process may leave a behavioral signature if suppressed information turns out to be relevant shortly after being suppressed.


Reproduction ◽  
1966 ◽  
Vol 12 (1) ◽  
pp. 233-236 ◽  
Author(s):  
R. K. CHIPMAN ◽  
K. A. FOX

Sign in / Sign up

Export Citation Format

Share Document