scholarly journals The mathematical theory of the motion of rotated and unrotated rockets

An account is given of the mathematical theory of the motion of a rocket in flight. The aerodynamic forces and couples, and those due to the action of the burning gases, are investigated as fully as possible, and the equations of motion are set up in their most general form. The effects of a variety of disturbing factors, such as wind and asymmetries of design and functioning, are considered. Solutions of the equations, most of which are suitable for numerical computation, are given under various assumptions regarding the form of the axial spin, the aerodynamic lift moment, the acceleration, etc. A thorough investigation of the conditions necessary for stable motion is carried out. The paper concludes with a summary in which the main features of rocket motion, as revealed by the theory, are discussed in general terms

1983 ◽  
Vol 219 (1215) ◽  
pp. 217-217

The movement of variously dense spherical particles representing a variety of seeds, fruits, spores and pollen, and released from rest into arbitrary winds and a gravitational field is discussed in general terms that account in detail for changes in the quasi-static aerodynamic resistance to motion experienced by such particles during aerial flight. A hybrid analytical-empirical law is established which describes this resistance fairly accurately for particle Reynolds numbers in the range 0—60 000 and that allows for the numerical integration of the equations of motion so as to cover a very wide range of flight conditions. This makes possible the provision of a set of four-parameter universal range tables from which the dispersal distances for an enormous number of practical cases may be estimated. One particular case of particle movement in a region of pseudo-thermal convection is also discussed and this shows how a marked degree of deposition concentration may be induced in some circumstances by such a flow. Botanists and ecologists concerned with seed and particle dispersal in the environment may find the universal range tables of particular interest and use. This is because the tables obviate the need for the integration of the equations of motion when dealing with individual cases and permit an estimation of range purely on the basis of the specified quantities of particle size, density and altitude of release, atmospheric wind speed, density and viscosity, and the acceleration due to gravity.


Author(s):  
P. Maißer

This paper presents a differential-geometric approach to the multibody system dynamics regarded as a point dynamics in a n-dimensional configuration space Rn. This configuration space becomes a Riemannian space Vn the metric of which is defined by the kinetic energy of the multibody system (MBS). Hence, all concepts and statements of the Riemannian geometry can be used to study the dynamics of MBS. One of the key points is to set up the non-linear Lagrangian motion equations of tree-like MBS as well as of constrained mechanical systems, the perturbed equations of motion, and the motion equations of hybrid MBS in a derivative-free manner. Based on this approach transformation properties can be investigated for application in real-time simulation, control theory, Hamilton mechanics, the construction of first integrals, stability etc. Finally, a general Lyapunov-stable force control law for underactuated systems is given that demonstrates the power of the approach in high-performance sports applications.


1971 ◽  
Vol 13 (5) ◽  
pp. 330-343 ◽  
Author(s):  
D. F. Sheldon

Recent experience has shown that a plate-like load suspended beneath a helicopter moving in horizontal forward flight has unstable characteristics at both low and high forward speeds. These findings have prompted a theoretical analysis to determine the longitudinal and lateral dynamic stability of a suspended pallet. Only the longitudinal stability is considered here. Although it is strictly a non-linear problem, the usual assumptions have been made to obtain linearized equations of motion. The aerodynamic derivative data required for these equations have been obtained, where possible, for the appropriate ranges of Reynolds and Strouhal number by means of static and dynamic wind tunnel testing. The resulting stability equations (with full aerodynamic derivative information) have been set up and solved, on a digital computer, to give direct indication of a stable or unstable system for a combination of physical parameters. These results have indicated a longitudinal unstable mode for all practical forward speeds. Simultaneously the important stability derivatives were found for this instability and modifications were made subsequently in the suspension system to eliminate the instabilities in the longitudinal sense. Throughout this paper, all metric dimensions are given approximately.


1974 ◽  
Vol 1 (14) ◽  
pp. 26 ◽  
Author(s):  
J.A. Battjes

This paper deals with the following aspects of periodic water waves breaking on a plane slope breaking criterion, breaker type, phase difference across the surfzone, breaker height-to-depth ratio, run-up and set-up, and reflection. It is shown that these are approximately governed by a single similarity parameter only, embodying both the effects of slope angle and incident wave steepness. Various physical interpretations of this similarity parameter are given, while its role is discussed m general terms from the viewpoint of model prototype similarity.


Author(s):  
Jia Xiaohong ◽  
Ji Linhong ◽  
Jin Dewen ◽  
Zhang Jichuan

Abstract Clearance is inevitable in the kinematic joints of mechanisms. In this paper the dynamic behavior of a crank-slider mechanism with clearance in its tripod-ball sliding joint is investigated theoretically and experimentally. The mathematical model of this new-type joint is established, and the new concepts of basal system and active system are put forward. Based on the mode-change criterion established in this paper, the consistent equations of motion in full-scale are derived by using Kane method. The experimental rig was set up to measure the effects of the clearance on the dynamic response. Corresponding experimental studies verify the theoretical results satisfactorily. In addition, due to the nonlinear elements in the improved mathematical model of the joint with clearance, the chaotic responses are found in numerical simulation.


Author(s):  
Andreas Zwölfer ◽  
Johannes Gerstmayr

Abstract The conventional continuum-mechanics-based floating frame of reference formulation involves unhandy so-called inertia-shape-integrals in the equations of motion, which is why, commercial multibody software codes resort to a lumped mass approximation to avoid the evaluation of these integrals in their computer implementations. This paper recaps the conventional continuum mechanics floating frame of reference formulation and addresses its drawbacks by summarizing recent developments of the so-called nodal-based floating frame of reference formulation, which avoids inertia shape integrals ab initio, does not rely on a lumped mass approximation, and exhibits a way to calculate the so-called invariants, which are constant “ingredients” required to set up the equations of motion, in a consistent way.


1986 ◽  
Vol 23 (02) ◽  
pp. 432-442
Author(s):  
Terje Aven ◽  
Bo Bergman

For a large class of replacement models for stochastically deteriorating systems the optimality criteria of total expected discounted cost and long-run (expected) average cost per unit time have a common structure. In the present paper a formal description of this structure is given and the optimal rule is determined. A so-called ‘λ -minimization technique' is applied. This method is discussed in general terms.


1946 ◽  
Vol 39 (2) ◽  
pp. 59-65
Author(s):  
William S. Tobey

During the past four or five years volumes have been written on the reasons for adding general mathematics to the curriculum. Much has been written in general terms on the content of such courses. We are making little progress. We have had years of war with its emphasis on the need for mathematics but relatively little of a fundamental nature has been accomplished. There appears to be a lack of understanding of what needs to be done and how to do it. We have theorized too long. We set up goals and objectives, and then more goals, but just what to do, and how to go about doing it is seldom treated. It is time, yes past time, that we start doing something. Even though we do poorly and make many and serious mistakes we will have created possibilities for correction and improvement. All things must have beginnings and only after a thing exists can it be modified and improved. In our system we began some seventeen years ago to blunder along in an uncharted field, toiling in the belief that with constant analysis of our work we could improve.


Sign in / Sign up

Export Citation Format

Share Document