Differential-Geometric Methods in Multibody Dynamics and Control
This paper presents a differential-geometric approach to the multibody system dynamics regarded as a point dynamics in a n-dimensional configuration space Rn. This configuration space becomes a Riemannian space Vn the metric of which is defined by the kinetic energy of the multibody system (MBS). Hence, all concepts and statements of the Riemannian geometry can be used to study the dynamics of MBS. One of the key points is to set up the non-linear Lagrangian motion equations of tree-like MBS as well as of constrained mechanical systems, the perturbed equations of motion, and the motion equations of hybrid MBS in a derivative-free manner. Based on this approach transformation properties can be investigated for application in real-time simulation, control theory, Hamilton mechanics, the construction of first integrals, stability etc. Finally, a general Lyapunov-stable force control law for underactuated systems is given that demonstrates the power of the approach in high-performance sports applications.