Aerodynamic behaviour of bodies in the wakes of other bodies

Wakes of two-dimensional bluff bodies are described, with emphasis on the properties of the wake which influence the loads on other bodies placed in the wake. The unsteady irrotational flow outside the true wake is included in the discussion. Some limited information on the wakes of three-dimensional bluff bodies is also considered. The interaction between two bodies is subdivided into two categories: (i) when the bodies are close together and the upstream body is influenced by the downstream one and (ii) when the bodies are so far apart that only the downstream body is affected. Experiments are described in which the load on an aerofoil in the wake of a two-dimensional bluff body was measured. The results are presented in the form of an aerodynamic admittance and these experiments are used to illustrate the type of problem associated with the determination of the loads on a bluff body in a wake. Experiments are also described which show the large variation of time-averaged load which can be developed on a body which is part of a closely packed complex of bodies, as the orientation of the complex to the wind is varied. Finally, some ideas for future research are outlined.

Author(s):  
Ahmed F. Abdel Gawad

The aim of the present study is to find computationally the optimum parameters that affect the drag reduction of bluff bodies using a small object (obstacle). These parameters include the size of the obstacle as well as the gap between the obstacle and the bluff body. Two- and three-dimensional bodies were investigated in turbulent flow fields. The research was focused on the cases of the rectangular-section obstacle. Four values of the obstacle size were studied, namely: 4%, 10%, 35%, and 100% of the size of the bluff body. The effect of the obstacle on the thermal field of the two-dimensional body was also studied. Comparisons were carried out with the available experimental measurements. A proposed neuro-fuzzy approach was used to predict the drag reduction of the entire system. Results showed that system drag reductions up to 62% (two-dimensional flows) and 48% (three-dimensional flows) can be obtained. Also, enhancement of the body cooling up to 75% (two-dimensional flows) may be achieved. Generally, useful comments and suggestions are stated.


Author(s):  
Alejandro M. Briones ◽  
Balu Sekar ◽  
Hugh Thornburg

Non-reacting and reacting flows past typical flameholders are modeled with URANS and LES. The continuity, momentum, energy, species, and turbulence governing equations are solved using two- and three-dimensional configurations. Either 2-step global or 44-step reduced chemical mechanism for C3H8-air combustion, accounting for turbulence-chemistry interaction, and with temperature- and species-dependent thermodynamic and transport properties is utilized. For square and rectangular bluff bodies the flow separates at the leading edges, whereas for triangular bluff body separation occurs only at the trailing edges. These bluff bodies exhibit two shear layers at the trailing edges that shed asymmetric vortices. For rectangular bluff bodies with aspect ratios (AR) less than 2.3 there is backflow from the wake. With increasing AR from unity, backflow is gradually diminished, and the von Ka´rma´n Strouhal number (StvK) decreases. For 2.0<AR<2.3, StvK jumps to a higher value and separation again occurs at the trailing edges for AR = 2.3. Further increase in AR decreases StvK again. The simulations with URANS qualitatively and quantitatively match experimental results for StvK vs. AR. Quantitative discrepancies are, however, found for AR≥2.3. In addition, two-dimensional non-reacting flows with URANS are sufficient to predict StvK. Moreover, two-dimensional simulations of reacting flow indicate that the flame promotes static and dynamic stability for AR = 1.0 and 2.3. The flame is dynamically unstable for AR = 2.0, exhibiting a von Ka´rma´n flow pattern. Stable flames anchored at the most downstream separation location (e.g., the flame anchored at AR = 1.0 is attached to the leading edge, whereas that of AR = 2.3 is attached to the trailing edge). Realizable k-ε URANS and LES simulations for the triangular cylinder closely match the experimental StvK for both non-reacting and reacting flows. Nonetheless, LES predicts a smaller recirculation length than k-ε URANS. LES predicts a flow field in which Be´rnard/von Ka´rma´n (BvK) instability is suppressed, whereas URANS predicts a competition between the Kelvin-Helmholtz (KH) instability and BvK.


2021 ◽  
Vol 11 (15) ◽  
pp. 7016
Author(s):  
Pawel S. Dabrowski ◽  
Cezary Specht ◽  
Mariusz Specht ◽  
Artur Makar

The theory of cartographic projections is a tool which can present the convex surface of the Earth on the plane. Of the many types of maps, thematic maps perform an important function due to the wide possibilities of adapting their content to current needs. The limitation of classic maps is their two-dimensional nature. In the era of rapidly growing methods of mass acquisition of spatial data, the use of flat images is often not enough to reveal the level of complexity of certain objects. In this case, it is necessary to use visualization in three-dimensional space. The motivation to conduct the study was the use of cartographic projections methods, spatial transformations, and the possibilities offered by thematic maps to create thematic three-dimensional map imaging (T3DMI). The authors presented a practical verification of the adopted methodology to create a T3DMI visualization of the marina of the National Sailing Centre of the Gdańsk University of Physical Education and Sport (Poland). The profiled characteristics of the object were used to emphasize the key elements of its function. The results confirmed the increase in the interpretative capabilities of the T3DMI method, relative to classic two-dimensional maps. Additionally, the study suggested future research directions of the presented solution.


Author(s):  
Z. Gu ◽  
M. A. R. Sharif

Abstract The two-dimensional turbulent recirculating flow fields behind a V-shaped bluff body have been investigated numerically. Similar bluff bodies are used in combustion chambers for flame stabilization. The governing transport equations in conservative form are solved by a pressure based predictor-corrector method. The standard k-ϵ turbulence closure model and a boundary fitted multi-block curvilinear grid system are used in the computation. The code is validated against turbulent flow over a backward facing step problem. The predicted flow field behind the bluff body is also compared with experiment. It is found that while the qualitative features of the flow are well predicted, there is quantitative disagreement between the measurement and prediction. This disagreement can be partially attributed to the k-ϵ turbulence model which is known to be inadequate for recirculating flows. Parametric investigation of the flow field by varying the shape and size of the bluff body is also performed and the results are reported.


2001 ◽  
Vol 24 (2) ◽  
pp. 224-225
Author(s):  
Katherine A. Leighty ◽  
Sarah E. Cummins-Sebree ◽  
Dorothy M. Fragaszy

The arguments of Stoffregen & Bardy for studying perception based on the global array are intriguing. This theory can be examined in nonhuman species using nonverbal tasks. We examine how monkeys master a skill that incorporates a two-dimensional/three-dimensional interface. We feel this provides excellent support for Stoffregen & Bardy's theory.


1971 ◽  
Vol 50 (3) ◽  
pp. 481-491 ◽  
Author(s):  
E. O. Tuck

A theroetical analysis is given for potential flow over, around and under a vehicle of general shape moving close to a plane ground surface. Solutions are given both in the form of a small-gap asymptotic expansion and a direct numerical computation, with close agreement between the two for two-dimensional flows with and without circulation. Some results for three-dimensional bodies are discussed.


1980 ◽  
Vol 15 (1) ◽  
pp. 37-41 ◽  
Author(s):  
P S Theocaris ◽  
N I Ioakimidis

The optical method of caustics constitutes an efficient experimental technique for the determination of quantities of interest in elasticity problems. Up to now, this method has been applied only to two-dimensional elasticity problems (including plate and shell problems). In this paper, the method of caustics is extended to the case of three-dimensional elasticity problems. The particular problems of a concentrated force and a uniformly distributed loading acting normally on a half-space (on a circular region) are treated in detail. Experimentally obtained caustics for the first of these problems were seen to be in satisfactory agreement with the corresponding theoretical forms. The treatment of various, more complicated, three-dimensional elasticity problems, including contact problems, by the method of caustics is also possible.


2016 ◽  
Vol 799 ◽  
pp. 1-26 ◽  
Author(s):  
Daniel T. Prosser ◽  
Marilyn J. Smith

Three-dimensional bluff body aerodynamics are pertinent across a broad range of engineering disciplines. In three-dimensional bluff body flows, shear layer behaviour has a primary influence on the surface pressure distributions and, therefore, the integrated forces and moments. There currently exists a significant gap in understanding of the flow around canonical three-dimensional bluff bodies such as rectangular prisms and short circular cylinders. High-fidelity numerical experiments using a hybrid turbulence closure that resolves large eddies in separated wakes close this gap and provide new insights into the unsteady behaviour of these bodies. A time-averaging technique that captures the mean shear layer behaviours in these unsteady turbulent flows is developed, and empirical characterizations are developed for important quantities, including the shear layer reattachment distance, the separation bubble pressure, the maximum reattachment pressure, and the stagnation point location. Many of these quantities are found to exhibit a universal behaviour that varies only with the incidence angle and face shape (flat or curved) when an appropriate normalization is applied.


1977 ◽  
Vol 99 (3) ◽  
pp. 585-592 ◽  
Author(s):  
V. J. Modi ◽  
S. E. El-Sherbiny

A potential flow model is presented for two-dimensional symmetrical bluff bodies under wall confinement. It provides a procedure for predicting surface loading on a bluff body over a range of blockage ratios. Experimental results with normal flat plates and circular cylinders for blockage ratios up to 35.5 percent substantiate the validity of the approach.


Sign in / Sign up

Export Citation Format

Share Document