Low-latitude galactic y-ray emission: a probe, not a proof

The emission of high energy (above 70 MeV) y-rays from the galactic disc has been mapped by the COS-B mission with unprecedented detail. The results for [ b ] < 15° are seen to contain evidence of structures correlated with the Galaxy on various scales, from the ‘grand design’ down to granularities, showing that the diffuse interstellar medium, with its cosmic ray content, is well mapped by high energy y-ray astronomy. Two new detailed correlations are proposed, one local and one in the medium - distance scale, to corroborate the above statement. After discussing the importance of the discrete, unresolved sources also discovered by COS-B, an astrophysical process is sketched suggesting a scenario for enhanced emission in regions where interstellar medium shocks can accelerate cosmic rays. Finally, the contribution of the nucleon and electron cosmic ray components in generating the galactic y-rays in different energy ranges is briefly discussed, and seen to remain an open question.

1971 ◽  
Vol 2 ◽  
pp. 740-756
Author(s):  
Maurice M. Shapiro

The ‘Galactic’ cosmic rays impinging on the Earth come from afar over tortuous paths, traveling for millions of years. These particles are the only known samples of matter that reach us from regions of space beyond the solar system. Their chemical and isotopic composition and their energy spectra provide clues to the nature of cosmic-ray sources, the properties of interstellar space, and the dynamics of the Galaxy. Various processes in high-energy astrophysics could be illuminated by a more complete understanding of the arriving cosmic rays, including the electrons and gamma rays.En route, some of theprimordialcosmic-ray nuclei have been transformed by collision with interstellar matter, and the composition is substantially modified by these collisions. A dramatic consequence of the transformations is the presence in the arriving ‘beam’ of considerable fluxes of purely secondary elements (Li, Be, B), i.e., species that are, in all probability, essentially absent at the sources. We shall here discuss mainly the composition of the arriving ‘heavy’ nuclei -those heavier than helium - and what they teach us about thesourcecomposition, the galactic confinement of the particles, their path lengths, and their transit times.


Open Physics ◽  
2004 ◽  
Vol 2 (2) ◽  
Author(s):  
Tadeusz Wibig

AbstractIn this paper we will discuss the problem of Ultra High Energy Cosmic Rays (UHECR) and show that the idea of a Single Source Model established by Erlykin and Wolfendale (1997) to explain the features seen in cosmic ray energy spectra around the 1015 eV region can be successfully applied also for the much higher energies. The propagation of UHECR (of energies higher than 1019 eV) in extragalactic magnetic fields can no longer be described as a random walk (diffusion) process and the transition to rectilinear propagation gives a possible explanation for the so-called Greisen-Zatzepin-Kuzmin (GZK) cut-off which still remains an open question after almost 40 years. A transient “single source” located at a particular distance and producing UHECR for a finite time is the proposed solution.


2005 ◽  
Vol 20 (29) ◽  
pp. 6562-6583 ◽  
Author(s):  
A. DE RÚJULA

I outline a unified model of high-energy astrophysics, in which the gamma background radiation, cluster "cooling flows", gamma-ray bursts, X-ray flashes and cosmic-ray electrons and nuclei of all energies — share a common origin. The mechanism underlying these phenomena is the emission of relativistic "cannonballs" by ordinary supernovae, analogous to the observed ejection of plasmoids by quasars and microquasars. I concentrate on Cosmic Rays: the longest-lasting conundrum in astrophysics. The distribution of Cosmic Rays in the Galaxy, their total "luminosity", the broken power-law spectra with their observed slopes, the position of the knee(s) and ankle(s), and the alleged variations of composition with energy are all explained in terms of simple and "standard" physics. The model is only lacking a satisfactory theoretical understanding of the "cannon" that emits the cannonballs in catastrophic episodes of accretion onto a compact object.


2011 ◽  
Vol 7 (S284) ◽  
pp. 360-364
Author(s):  
Troy A. Porter

AbstractCosmic rays fill up the entire volume of galaxies, providing an important source of heating and ionisation of the interstellar medium, and may play a significant role in the regulation of star formation and galactic evolution. Diffuse emissions from radio to high-energy γ-rays (>100 MeV) arising from various interactions between cosmic rays and the interstellar medium, interstellar radiation field, and magnetic field, are currently the best way to trace the intensities and spectra of cosmic rays in the Milky Way and other galaxies. In this contribution, I describe our recent work to model the full spectral energy distribution of galaxies like the Milky Way from radio to γ-ray energies. The application to other galaxies, in particular the Magellanic Clouds and M31 that are now resolved in high-energy γ-rays by the Fermi-LAT, is also discussed.


1985 ◽  
Vol 106 ◽  
pp. 225-233
Author(s):  
Catherine J. Cesarsky

Gamma rays of energy in the range 30 MeV-several GeV, observed by the satellites SAS-2 and COS-B, are emitted in the interstellar medium as a result of interactions with gas of cosmic-ray nuclei in the GeV range (π° decay γ rays) and cosmic-ray electrons of energy > 30 MeV (bremsstrahlung γ rays). W. Hermsen has presented at this conference the γ ray maps of the Galaxy in three “colours” constructed by the COS-B collaboration; the information in such maps is supplemented by radio-continuum studies (see lecture by R. Beck), and is a useful tool for studying the distribution of gas, cosmic rays (c.r.) and magnetic fields in the Galaxy. The variables in this problem are many:large-scale (~ 1 kpc) and small-scale (~10 pc) distributions of c.r. nuclei, of c.r. electrons, of atomic and molecular hydrogen, of magnetic fields, fraction of the observed radiation due to localized sources, etc. Of these, only the distribution - or at least the column densities - of atomic hydrogen are determined in a reliable way. Estimates of the amount of molecular hydrogen can be derived from CO observations or from galaxy counts. The radio and gamma-ray data are not sufficient to disentangle all the other variables in a unique fashion, unless a number of assumptions are made (e.g. Paul et al. 1976). Still, the COS-B team has been able to show that :a) there is a correlation between the gamma-ray emission from local regions, as observed at intermediate latitudes, and the total column density of dust, as measured by galaxy counts. The simplest interpretation is that the density of c.r. nuclei and electrons is uniform within 500 pc of the sun, and that dust and gas are well mixed. Then, γ rays can be used as excellent tracers of local gas complexes (Lebrun et al. 1982, Strong et al. 1982).b) In the same way, the simplest interpretation of the γ-ray emission at energy > 300 MeV from the inner Galaxy, is that c.r. nuclei and electrons are distributed uniformly as well : there is no need for an enhanced density of c.r. in the 3–6 kpc ring; on the contrary, even assuming a uniform density of c.r., the γ-ray data are in conflict with the highest estimates of molecular hydrogen in the radio-astronomy literature (Mayer-Hasselwander et al. 1982).c) In the outer Galaxy, the gradient of c.r. which had become apparent in the early SAS-2 data can now, with COS-B data, be studied in three energy ranges. A gradient in the c.r. distribution is only required to explain the low-energy radiation, which is dominated by bremsstrahlung from relativistic electrons (Bloemen et al., in preparation).


2018 ◽  
Vol 616 ◽  
pp. A57 ◽  
Author(s):  
G. E. Romero ◽  
A. L. Müller ◽  
M. Roth

Context. Starbursts are galaxies undergoing massive episodes of star formation. The combined effect of stellar winds from hot stars and supernova explosions creates a high-temperature cavity in the nuclear region of these objects. The very hot gas expands adiabatically and escapes from the galaxy creating a superwind which sweeps matter from the galactic disk. The superwind region in the halo is filled with a multi-phase gas with hot, warm, cool, and relativistic components. Aims. The shocks associated with the superwind of starbursts and the turbulent gas region of the bubble inflated by them might accelerate cosmic rays up to high energies. In this work we calculate the cosmic ray production associated with the superwind using parameters that correspond to the nearby southern starburst galaxy NGC 253, which has been suggested as a potential accelerator of ultra-high-energy cosmic rays. Methods. We evaluate the efficiency of both diffusive shock acceleration (DSA) and stochastic diffusive acceleration (SDA) in the superwind of NGC 253. We estimate the distribution of both hadrons and leptons and calculate the corresponding spectral energy distributions of photons. The electromagnetic radiation can help to discriminate between the different scenarios analyzed. Results. We find that the strong mass load of the superwind, recently determined through ALMA observations, strongly attenuates the efficiency of DSA in NGC 253, whereas SDA is constrained by the age of the starburst. Conclusions. We conclude that NGC 253 and similar starbursts can only accelerate iron nuclei beyond ~1018 eV under very special conditions. If the central region of the galaxy harbors a starved supermassive black hole of ~106 M⊙, as suggested by some recent observations, a contribution in the range 1018−1019 eV can be present for accretion rates ṁ ~ 10−3 in Eddington units. Shock energies of the order of 100 EeV might only be possible if very strong magnetic field amplification occurs close to the superwind.


1968 ◽  
Vol 46 (10) ◽  
pp. S544-S547 ◽  
Author(s):  
D. V. Reames ◽  
C. E. Fichtel

Recent measurements of low-energy galactic cosmic rays obtained on sounding rockets and satellites exhibit a composition different from that obtained for intermediate and high-energy radiation obtained at balloon altitudes. In particular the ratio of light to medium nuclei is observed to be 0.2–0.3 in the 50–100 MeV/nucleon interval as compared with values near 0.5 in the 200–500 MeV/nucleon region. Lower values of the ratios C/O, N/O, F/O, and odd-Z/even-Z are also found. In the light of these new measurements and of new measurements on the fragmentation cross sections for cosmic-ray nuclei in interstellar space, an attempt has been made to calculate the composition expected if similar source spectra are assumed. It is found that neither passage through a fixed amount of material nor an equilibrium condition (exponential path-length distribution) is adequate to explain the observed features. The effects of including other mechanisms such as rigidity-dependent escape from the galaxy and Fermi acceleration in interstellar space are evaluated.


Within our Galaxy, cosmic rays can reveal their presence in interstellar space and probably in source regions by their interactions with interstellar matter which lead to γ-rays with a very characteristic energy spectrum. From the study of the intensity of the high energy γ radiation as a function of galactic longitude, it is already clear that cosmic rays are almost certainly not uniformly distributed in the Galaxy and are not concentrated in the centre of the Galaxy. The galactic cosmic rays appear to be tied to galactic structural features, presumably by the galactic magnetic fields which are in turn held by the matter in the arm segments and the clouds. On the extra-galactic scale, it is now possible to say that cosmic rays are probably not at the density seen near the Earth. The diffuse celestial γ-ray spectrum that is observed presents the interesting possibility of cosmological studies and possible evidence for a residual universal cosmic ray density, which is much lower than the present galactic cosmic-ray density.


2021 ◽  
Vol 366 (6) ◽  
Author(s):  
Hidetoshi Sano ◽  
Yasuo Fukui

AbstractWe review recent progress in elucidating the relationship between high-energy radiation and the interstellar medium (ISM) in young supernova remnants (SNRs) with ages of ∼2000 yr, focusing in particular on RX J1713.7−3946 and RCW 86. Both SNRs emit strong nonthermal X-rays and TeV $\gamma $ γ -rays, and they contain clumpy distributions of interstellar gas that includes both atomic and molecular hydrogen. We find that shock–cloud interactions provide a viable explanation for the spatial correlation between the X-rays and ISM. In these interactions, the supernova shocks hit the typically pc-scale dense cores, generating a highly turbulent velocity field that amplifies the magnetic field up to 0.1–1 mG. This amplification leads to enhanced nonthermal synchrotron emission around the clumps, whereas the cosmic-ray electrons do not penetrate the clumps. Accordingly, the nonthermal X-rays exhibit a spatial distribution similar to that of the ISM on the pc scale, while they are anticorrelated at sub-pc scales. These results predict that hadronic $\gamma $ γ -rays can be emitted from the dense cores, resulting in a spatial correspondence between the $\gamma $ γ -rays and the ISM. The current pc-scale resolution of $\gamma $ γ -ray observations is too low to resolve this correspondence. Future $\gamma $ γ -ray observations with the Cherenkov Telescope Array will be able to resolve the sub-pc-scale $\gamma $ γ -ray distribution and provide clues to the origin of these cosmic $\gamma $ γ -rays.


1970 ◽  
Vol 39 ◽  
pp. 168-183
Author(s):  
E. N. Parker

The topic of this presentation is the origin and dynamical behavior of the magnetic field and cosmic-ray gas in the disk of the Galaxy. In the space available I can do no more than mention the ideas that have been developed, with but little explanation and discussion. To make up for this inadequacy I have tried to give a complete list of references in the written text, so that the interested reader can pursue the points in depth (in particular see the review articles Parker, 1968a, 1969a, 1970). My purpose here is twofold, to outline for you the calculations and ideas that have developed thus far, and to indicate the uncertainties that remain. The basic ideas are sound, I think, but, when we come to the details, there are so many theoretical alternatives that need yet to be explored and so much that is not yet made clear by observations.


Sign in / Sign up

Export Citation Format

Share Document