scholarly journals Nasal architecture: form and flow

Author(s):  
D.J Doorly ◽  
D.J Taylor ◽  
A.M Gambaruto ◽  
R.C Schroter ◽  
N Tolley

Current approaches to model nasal airflow are reviewed in this study, and new findings presented. These new results make use of improvements to computational and experimental techniques and resources, which now allow key dynamical features to be investigated, and offer rational procedures to relate variations in anatomical form. Specifically, both replica and simplified airways of a single subject were investigated and compared with the replica airways of two other individuals with overtly differing geometries. Procedures to characterize and compare complex nasal airway geometry are first outlined. It is then shown that coupled computational and experimental studies, capable of obtaining highly resolved data, reveal internal flow structures in both intrinsically steady and unsteady situations. The results presented demonstrate that the intimate relation between nasal form and flow can be explored in greater detail than hitherto possible. By outlining means to compare complex airway geometries and demonstrating the effects of rational geometric simplification on the flow structure, this work offers a fresh approach to studies of how natural conduits guide and control flow. The concepts and tools address issues that are thus generic to flow studies in other physiological systems.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5952
Author(s):  
Przemysław Błasiak ◽  
Marcin Opalski ◽  
Parthkumar Parmar ◽  
Cezary Czajkowski ◽  
Sławomir Pietrowicz

The aim of the article is to numerically model a two-dimensional multiphase flow based on the volume of fluid method (VOF) in a pulsating heat pipe (PHP). The current state of knowledge regarding the modeling of these devices was studied and summarised. The proposed model is developed within open source software, OpenFOAM, based on the predefined solver called interPhaseChangeFoam. The analyses were carried out in terms of the influence of four different mass transfer models between the phases, proposed by Tanasawa, Lee, Kafeel and Turan, and Xu et al. on the shape and dynamics of the internal flow structures. The numerical models were validated against data obtained from a specially designed experimental setup, consisting of three bends of pulsating heat pipes. The numerical calculations were carried out with ethanol being treated as a working medium and the initial and boundary conditions taken directly from the measurement procedures. The variable input parameter for the model was the heat flux implemented in the evaporation section and a fixed temperature applied to the condensation section. The flow structures obtained from the numerical analyses were compared and discussed with the flow structures gained from experimental studies by employing a high speed camera. In addition, to verify the quantitative results obtained from the numerical analyses with the experimental data, a technique called particle image velocimetry (PIV) was used for the velocity vector field. For the analysed velocity ranges, the relative error obtained was reached at the level of 10%.


2009 ◽  
Vol 106 (4) ◽  
pp. 1356-1364 ◽  
Author(s):  
Arne Yndestad ◽  
Karl-Otto Larsen ◽  
Erik Øie ◽  
Thor Ueland ◽  
Camilla Smith ◽  
...  

Activin A, a member of the transforming growth factor (TGF)-β superfamily, is involved in regulation of tissue remodeling and inflammation. Herein, we wanted to explore a role for activin A in pulmonary hypertension (PH). Circulating levels of activin A and its binding protein follistatin were measured in patients with PH ( n = 47) and control subjects ( n = 14). To investigate synthesis and localization of pulmonary activin A, we utilized an experimental model of hypoxia-induced PH. In mouse lungs, we also explored signaling pathways that can be activated by activin A, such as phosphorylation of Smads, which are mediators of TGF-β signaling. Possible pathophysiological mechanisms initiated by activin A were explored by exposing pulmonary arterial smooth muscle cells in culture to this cytokine. Elevated levels of activin A and follistatin were found in patients with PH, and activin A levels were significantly related to mortality. Immunohistochemistry of lung autopsies from PH patients and lungs with experimental PH localized activin A primarily to alveolar macrophages and bronchial epithelial cells. Mice with PH exhibited increased pulmonary levels of mRNA for activin A and follistatin in the lungs, and also elevated pulmonary levels of phosphorylated Smad2. Finally, we found that activin A increased proliferation and induced gene expression of endothelin-1 and plasminogen activator inhibitor-1 in pulmonary artery smooth muscle cells, mediators that could contribute to vascular remodeling. Our findings in both clinical and experimental studies suggest a role for activin A in the development of various types of PH.


2012 ◽  
Vol 490-495 ◽  
pp. 594-597
Author(s):  
Cheng Qun Li ◽  
Liang Gao

This paper introduces a new type of automatic steel bundling machine for bundling process, which includes a pneumatic action process, mainly do some researches on the pneumatic control system. The system chooses PLC as the core control component, puts forward the hardware of control system and control flow. Eventually we have been designed the control program.


2021 ◽  
pp. 014544552110540
Author(s):  
Nihal Sen

The purpose of this study is to provide a brief introduction to effect size calculation in single-subject design studies, including a description of nonparametric and regression-based effect sizes. We then focus the rest of the tutorial on common regression-based methods used to calculate effect size in single-subject experimental studies. We start by first describing the difference between five regression-based methods (Gorsuch, White et al., Center et al., Allison and Gorman, Huitema and McKean). This is followed by an example using the five regression-based effect size methods and a demonstration how these methods can be applied using a sample data set. In this way, the question of how the values obtained from different effect size methods differ was answered. The specific regression models used in these five regression-based methods and how these models can be obtained from the SPSS program were shown. R2 values obtained from these five methods were converted to Cohen’s d value and compared in this study. The d values obtained from the same data set were estimated as 0.003, 0.357, 2.180, 3.470, and 2.108 for the Allison and Gorman, Gorsuch, White et al., Center et al., as well as for Huitema and McKean methods, respectively. A brief description of selected statistical programs available to conduct regression-based methods was given.


2018 ◽  
Vol 35 (1) ◽  
pp. 5-23 ◽  
Author(s):  
Eleftheria Geronikou ◽  
Maggie Vance ◽  
Bill Wells ◽  
Jenny Thomson

Intervention with children with speech and language difficulties has been proven beneficial compared with no treatment yet, knowing what type of intervention to provide remains a challenge. Studies of English-speaking children indicate that intervention targeting the production of morphological targets may have a positive effect on phonological aspects and vice versa. However, studies have not reported on generalization effects to untreated morphemes and little is yet known about morphological intervention in the context of a highly inflected language. The purpose of the current intervention case study was to investigate the effect of intervention in relation to phonological and morphological targets in Greek, a language characterized by complex inflectional morphology. A single subject research design was used with pre- and post-intervention assessment carried out. The participant was a four-year-old Greek-speaking boy with speech difficulties. The production of /s/, a phoneme used in multiple phonological and morphological contexts was targeted with alternating focus of intervention between phonological and morphological targets. Assessment took place at two levels: macro-assessment to monitor broad changes in speech; micro-assessment to measure therapy-specific changes in the production of treated targets and generalization to untreated targets and control items. There were four phases of intervention with a total of 24 hours of therapy. Significant improvement in performance accuracy was found between assessment scores immediately pre- and post-intervention. Intervention targeting the production of a phoneme in the word stem was not sufficient to accomplish the accurate production of morphemes requiring the same phoneme; intervention directly targeting morphemes was successful. Within-domain generalization was observed in both domains. Improved naming accuracy was observed post-intervention that was maintained at follow-up. The present study supports the case for morphophonological intervention. Morphological elements should be addressed in a comprehensive intervention for speech sound disorders.


Author(s):  
Farhad Imani ◽  
Bing Yao ◽  
Ruimin Chen ◽  
Prahalada Rao ◽  
Hui Yang

Nowadays manufacturing industry faces increasing demands to customize products according to personal needs. This trend leads to a proliferation of complex product designs. To cope with this complexity, manufacturing systems are equipped with advanced sensing capabilities. However, traditional statistical process control methods are not concerned with the stream of in-process imaging data. Also, very little has been done to investigate nonlinearity, irregularity, and inhomogeneity in image stream collected from manufacturing processes. This paper presents the multifractal spectrum and lacunarity measures to characterize irregular and inhomogeneous patterns of image profiles, as well as detect the hidden dynamics of the underlying manufacturing process. Experimental studies show that the proposed method not only effectively characterizes the surface finishes for quality control of ultra-precision machining but also provides an effective model to link process parameters with fractal characteristics of in-process images acquired from additive manufacturing. This, in turn, will allow a swift response to processes changes and consequently reduce the number of defective products. The proposed fractal method has strong potentials to be applied for process monitoring and control in a variety of domains such as ultra-precision machining, additive manufacturing, and biomanufacturing.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668529 ◽  
Author(s):  
Wen-wu Song ◽  
Li-chao Wei ◽  
Jie Fu ◽  
Jian-wei Shi ◽  
Xiu-xin Yang ◽  
...  

The backflow vortexes at the suction connection in high-speed centrifugal pumps have negative effect on the flow field. Setting an orifice plate in front of the inducer is able to decrease the negative effect caused by backflow vortexes. The traditional plate is able to partially control the backflow vortexes, but a small part of the vortex is still in the inlet and the inducer. Four new types of orifice plates were created, and the control effects on backflow vortexes were analyzed. The ANSYS-CFX software was used to numerically simulate a high-speed centrifugal pump. The variations of streamline and velocity vectors at the suction connection were analyzed. Meanwhile, the effects of these plates on the impeller pressure and the internal flow field of the inducer were analyzed. Numerically, simulation and experimental data analysis methods were used to compare the head and efficiency of the high-speed pumps. The results show that the C-type orifice plate can improve the backflow vortex, reduce the low-pressure area, and improve the hydraulic performance of the high-speed pump.


Sign in / Sign up

Export Citation Format

Share Document