Autonomous driving in urban environments: approaches, lessons and challenges

Author(s):  
Mark Campbell ◽  
Magnus Egerstedt ◽  
Jonathan P. How ◽  
Richard M. Murray

The development of autonomous vehicles for urban driving has seen rapid progress in the past 30 years. This paper provides a summary of the current state of the art in autonomous driving in urban environments, based primarily on the experiences of the authors in the 2007 DARPA Urban Challenge (DUC). The paper briefly summarizes the approaches that different teams used in the DUC, with the goal of describing some of the challenges that the teams faced in driving in urban environments. The paper also highlights the long-term research challenges that must be overcome in order to enable autonomous driving and points to opportunities for new technologies to be applied in improving vehicle safety, exploiting intelligent road infrastructure and enabling robotic vehicles operating in human environments.

2016 ◽  
Vol 36 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Will Maddern ◽  
Geoffrey Pascoe ◽  
Chris Linegar ◽  
Paul Newman

We present a challenging new dataset for autonomous driving: the Oxford RobotCar Dataset. Over the period of May 2014 to December 2015 we traversed a route through central Oxford twice a week on average using the Oxford RobotCar platform, an autonomous Nissan LEAF. This resulted in over 1000 km of recorded driving with almost 20 million images collected from 6 cameras mounted to the vehicle, along with LIDAR, GPS and INS ground truth. Data was collected in all weather conditions, including heavy rain, night, direct sunlight and snow. Road and building works over the period of a year significantly changed sections of the route from the beginning to the end of data collection. By frequently traversing the same route over the period of a year we enable research investigating long-term localization and mapping for autonomous vehicles in real-world, dynamic urban environments. The full dataset is available for download at: http://robotcar-dataset.robots.ox.ac.uk


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 844
Author(s):  
Armando Tripodi

Lupus anticoagulant (LA) is one of the three laboratory parameters (the others being antibodies to either cardiolipin or β2-glycoprotein I) which defines the rare but potentially devastating condition known as antiphospholipid syndrome (APS). Testing for LA is a challenging task for the clinical laboratory because specific tests for its detection are not available. However, proper LA detection is paramount for patients’ management, as its persistent positivity in the presence of (previous or current) thrombotic events, candidate for long term anticoagulation. Guidelines for LA detection have been established and updated over the last two decades. Implementation of these guidelines across laboratories and participation to external quality assessment schemes are required to help standardize the diagnostic procedures and help clinicians for appropriate management of APS. This article aims to review the current state of the art and the challenges that clinical laboratories incur in the detection of LA.


2016 ◽  
Vol 371 (1688) ◽  
pp. 20150106 ◽  
Author(s):  
Margaret M. McCarthy

Studies of sex differences in the brain range from reductionistic cell and molecular analyses in animal models to functional imaging in awake human subjects, with many other levels in between. Interpretations and conclusions about the importance of particular differences often vary with differing levels of analyses and can lead to discord and dissent. In the past two decades, the range of neurobiological, psychological and psychiatric endpoints found to differ between males and females has expanded beyond reproduction into every aspect of the healthy and diseased brain, and thereby demands our attention. A greater understanding of all aspects of neural functioning will only be achieved by incorporating sex as a biological variable. The goal of this review is to highlight the current state of the art of the discipline of sex differences research with an emphasis on the brain and to contextualize the articles appearing in the accompanying special issue.


2021 ◽  
Vol 2 ◽  
Author(s):  
Kai-Cheng Yan ◽  
Axel Steinbrueck ◽  
Adam C. Sedgwick ◽  
Tony D. James

Over the past 30 years fluorescent chemosensors have evolved to incorporate many optical-based modalities and strategies. In this perspective we seek to highlight the current state of the art as well as provide our viewpoint on the most significant future challenges remaining in the area. To underscore current trends in the field and to facilitate understanding of the area, we provide the reader with appropriate contemporary examples. We then conclude with our thoughts on the most probable directions that chemosensor development will take in the not-too-distant future.


2019 ◽  
Author(s):  
Mehrdad Shoeiby ◽  
Mohammad Ali Armin ◽  
Sadegh Aliakbarian ◽  
Saeed Anwar ◽  
Lars petersson

<div>Advances in the design of multi-spectral cameras have</div><div>led to great interests in a wide range of applications, from</div><div>astronomy to autonomous driving. However, such cameras</div><div>inherently suffer from a trade-off between the spatial and</div><div>spectral resolution. In this paper, we propose to address</div><div>this limitation by introducing a novel method to carry out</div><div>super-resolution on raw mosaic images, multi-spectral or</div><div>RGB Bayer, captured by modern real-time single-shot mo-</div><div>saic sensors. To this end, we design a deep super-resolution</div><div>architecture that benefits from a sequential feature pyramid</div><div>along the depth of the network. This, in fact, is achieved</div><div>by utilizing a convolutional LSTM (ConvLSTM) to learn the</div><div>inter-dependencies between features at different receptive</div><div>fields. Additionally, by investigating the effect of different</div><div>attention mechanisms in our framework, we show that a</div><div>ConvLSTM inspired module is able to provide superior at-</div><div>tention in our context. Our extensive experiments and anal-</div><div>yses evidence that our approach yields significant super-</div><div>resolution quality, outperforming current state-of-the-art</div><div>mosaic super-resolution methods on both Bayer and multi-</div><div>spectral images. Additionally, to the best of our knowledge,</div><div>our method is the first specialized method to super-resolve</div><div>mosaic images, whether it be multi-spectral or Bayer.</div><div><br></div>


Author(s):  
J. Schachtschneider ◽  
C. Brenner

Abstract. The development of automated and autonomous vehicles requires highly accurate long-term maps of the environment. Urban areas contain a large number of dynamic objects which change over time. Since a permanent observation of the environment is impossible and there will always be a first time visit of an unknown or changed area, a map of an urban environment needs to model such dynamics.In this work, we use LiDAR point clouds from a large long term measurement campaign to investigate temporal changes. The data set was recorded along a 20 km route in Hannover, Germany with a Mobile Mapping System over a period of one year in bi-weekly measurements. The data set covers a variety of different urban objects and areas, weather conditions and seasons. Based on this data set, we show how scene and seasonal effects influence the measurement likelihood, and that multi-temporal maps lead to the best positioning results.


2011 ◽  
Vol 11 (7) ◽  
pp. 19029-19087 ◽  
Author(s):  
A. Colette ◽  
C. Granier ◽  
Ø. Hodnebrog ◽  
H. Jakobs ◽  
A. Maurizi ◽  
...  

Abstract. We discuss the capability of current state-of-the-art chemistry and transport models to reproduce air quality trends and inter annual variability. Documenting these strengths and weaknesses on the basis of historical simulations is essential before the models are used to investigate future air quality projections. To achieve this, a coordinated modelling exercise was performed in the framework of the CityZEN European Project. It involved six regional and global chemistry-transport models (Bolchem, Chimere, Emep, Eurad, OsloCTM2 and Mozart) simulating air quality over the past decade in the Western European anthropogenic emissions hotspots. Comparisons between models and observations allow assessing the skills of the models to capture the trends in basic atmospheric constituents (NO2, O3, and PM10). We find that the trends of primary constituents are well reproduced (except in some countries – owing to their sensitivity to the emission inventory) although capturing the more moderate trends of secondary species such as O3 is more challenging. Apart from the long term trend, the modelled monthly variability is consistent with the observations but the year-to-year variability is generally underestimated. A comparison of simulations where anthropogenic emissions are kept constant is also investigated. We find that the magnitude of the emission-driven trend exceeds the natural variability for primary compounds. We can thus conclude that emission management strategies have had a significant impact over the past 10 yr, hence supporting further emission reductions strategies.


2019 ◽  
Vol 11 (19) ◽  
pp. 5222 ◽  
Author(s):  
Luca Staricco ◽  
Valentina Rappazzo ◽  
Jacopo Scudellari ◽  
Elisabetta Vitale Brovarone

There is great uncertainty about the transition from human to autonomous driving vehicles (AVs), as well as about the extent and direction of their potential impacts on the urban built environment. Planners are aware of the importance of leading this transition but are hesitant about how to proceed, and public administrations generally show a passive attitude. One of the reasons is the difficulty of defining long-term visions and identifying transition paths to achieve the desired future. The literature on AVs is growing rapidly but most of the visions proposed so far do not consider in detail how circulation and parking of AVs will (or could) be differently regulated in cities. In this study, three visions for the Italian city of Turin are proposed. The aim of these visions is to highlight how different forms of regulation of AV circulation and parking can impact on the sustainability and livability of the city. A focus group and a set of interviews with experts and stakeholders were used to validate the three visions and assess their advisability and sustainability. This visioning exercise is the first step in the development of a backcasting process.


2019 ◽  
Vol 9 (19) ◽  
pp. 4093 ◽  
Author(s):  
Santiago Royo ◽  
Maria Ballesta-Garcia

Lidar imaging systems are one of the hottest topics in the optronics industry. The need to sense the surroundings of every autonomous vehicle has pushed forward a race dedicated to deciding the final solution to be implemented. However, the diversity of state-of-the-art approaches to the solution brings a large uncertainty on the decision of the dominant final solution. Furthermore, the performance data of each approach often arise from different manufacturers and developers, which usually have some interest in the dispute. Within this paper, we intend to overcome the situation by providing an introductory, neutral overview of the technology linked to lidar imaging systems for autonomous vehicles, and its current state of development. We start with the main single-point measurement principles utilized, which then are combined with different imaging strategies, also described in the paper. An overview of the features of the light sources and photodetectors specific to lidar imaging systems most frequently used in practice is also presented. Finally, a brief section on pending issues for lidar development in autonomous vehicles has been included, in order to present some of the problems which still need to be solved before implementation may be considered as final. The reader is provided with a detailed bibliography containing both relevant books and state-of-the-art papers for further progress in the subject.


2019 ◽  
Vol 217 (3) ◽  
pp. 521-523 ◽  
Author(s):  
Anthony S. David

Academic interest in the concept of insight in psychosis has increased markedly over the past 30 years, prompting this selective appraisal of the current state of the art. Considerable progress has been made in terms of measurement and confirming a number of clinical associations. More recently, the relationship between insight and involuntary treatment has been scrutinised more closely alongside the link between decision-making capacity and insight. Advances in the clinical and cognitive neurosciences have influenced conceptual development, particularly the field of ‘metacognition’. New therapies, including those that are psychologically and neurophysiologically based, are being tested as ways to enhance insight.


Sign in / Sign up

Export Citation Format

Share Document