scholarly journals Ribosomal profiling during prion disease uncovers progressive translational derangement in glia but not in neurons

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Claudia Scheckel ◽  
Marigona Imeri ◽  
Petra Schwarz ◽  
Adriano Aguzzi

Prion diseases are caused by PrPSc, a self-replicating pathologically misfolded protein that exerts toxicity predominantly in the brain. The administration of PrPSc causes a robust, reproducible and specific disease manifestation. Here, we have applied a combination of translating ribosome affinity purification and ribosome profiling to identify biologically relevant prion-induced changes during disease progression in a cell-type-specific and genome-wide manner. Terminally diseased mice with severe neurological symptoms showed extensive alterations in astrocytes and microglia. Surprisingly, we detected only minor changes in the translational profiles of neurons. Prion-induced alterations in glia overlapped with those identified in other neurodegenerative diseases, suggesting that similar events occur in a broad spectrum of pathologies. Our results suggest that aberrant translation within glia may suffice to cause severe neurological symptoms and may even be the primary driver of prion disease.

2020 ◽  
Author(s):  
Claudia Scheckel ◽  
Marigona Imeri ◽  
Petra Schwarz ◽  
Adriano Aguzzi

AbstractPrion diseases are caused by PrPSc, a self-replicating pathologically misfolded protein that exerts toxicity predominantly in the brain. The administration of PrPSc causes a robust, reproducible and specific disease manifestation. Here we have applied a combination of translating ribosome affinity purification and ribosome profiling to identify biologically relevant prion-induced changes during disease progression in a cell-type specific and genome-wide manner. Terminally diseased mice with severe neurological symptoms showed extensive alterations in astrocytes and microglia. Surprisingly, we detected only minor changes in the translational profiles of neurons. Prion-induced alterations in glia overlapped with those identified in other neurodegenerative diseases, suggesting that similar events occur in a broad spectrum of pathologies. Our results suggest that aberrant translation within glia may suffice to cause severe neurological symptoms and may even be the primary driver of prion disease.


2014 ◽  
Vol 23 (15) ◽  
pp. 4134-4141 ◽  
Author(s):  
Yael Friedman-Levi ◽  
Orli Binyamin ◽  
Kati Frid ◽  
Haim Ovadia ◽  
Ruth Gabizon

Prion diseases, which can manifest by transmissible, sporadic or genetic etiologies, share several common features, such as a fatal neurodegenerative outcome and the aberrant accumulation of proteinase K (PK)-resistant PrP forms in the CNS. In infectious prion diseases, such as scrapie in mice, prions first replicate in immune organs, then invade the CNS via ascending peripheral tracts, finally causing death. Accelerated neuroinvasion and death occurs when activated prion-infected immune cells infiltrate into the CNS, as is the case for scrapie-infected mice induced for experimental autoimmune encephalomyelitis (EAE), a CNS inflammatory insult. To establish whether the immune system plays such a central role also in genetic prion diseases, we induced EAE in TgMHu2ME199K mice, a line mimicking for late onset genetic Creutzfeldt Jacob disease (gCJD), a human prion disease. We show here that EAE induction of TgMHu2ME199K mice neither accelerated nor aggravated prion disease manifestation. Concomitantly, we present evidence that PK-resistant PrP forms were absent from CNS immune infiltrates, and most surprisingly also from lymph nodes and spleens of TgMHu2ME199K mice at all ages and stages of disease. These results imply that the mechanism of genetic prion disease differs widely from that of the infectious presentation, and that the conversion of mutant PrPs into PK resistant forms occurs mostly/only in the CNS. If the absence of pathogenic PrP forms form immune organs is also true for gCJD patients, it may suggest their blood is devoid of prion infectivity.


Author(s):  
Marina Betancor ◽  
Laura Moreno-Martínez ◽  
Óscar López-Pérez ◽  
Alicia Otero ◽  
Adelaida Hernaiz ◽  
...  

AbstractThe non-toxic C-terminal fragment of the tetanus toxin (TTC) has been described as a neuroprotective molecule since it binds to Trk receptors and activates Trk-dependent signaling, activating neuronal survival pathways and inhibiting apoptosis. Previous in vivo studies have demonstrated the ability of this molecule to increase mice survival, inhibit apoptosis and regulate autophagy in murine models of neurodegenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. These diseases share different pathological features with other neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson’s disease or Alzheimer’s disease. Hitherto, there are no effective therapies to treat prion diseases. Here, we present a pilot study to test the therapeutic potential of TTC to treat prion diseases. C57BL6 wild-type mice and the transgenic mice Tg338, which overexpress PrPC, were intracerebrally inoculated with scrapie prions and then subjected to a treatment consisting of repeated intramuscular injections of TTC. Our results indicate that TTC displays neuroprotective effects in the murine models of prion disease reducing apoptosis, regulating autophagy and therefore increasing neuronal survival, although TTC did not increase survival time in these models.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 750
Author(s):  
Tibor Moško ◽  
Soňa Galušková ◽  
Radoslav Matěj ◽  
Magdalena Brůžová ◽  
Karel Holada

The possibilities for diagnosing prion diseases have shifted significantly over the last 10 years. The RT-QuIC assay option has been added for neuropsychiatric symptoms, supporting biomarkers and final post-mortem confirmation. Samples of brain homogenates used for final diagnosis, archived for many years, provide the possibility for retrospective studies. We used a second-generation RT-QuIC assay to detect seeding activity in different types of sporadic and genetic prion diseases in archival brain homogenates and post-mortem CSF samples that were 2 to 15 years old. Together, we tested 92 archival brain homogenates: 39 with definite prion disease, 28 with definite other neurological disease, and 25 with no signs of neurological disorders. The sensitivity and specificity of the assay were 97.4% and 100%, respectively. Differences were observed in gCJD E200K, compared to the sporadic CJD group. In 52 post-mortem CSF samples—24 with definite prion disease and 28 controls—we detected the inhibition of seeding reaction due to high protein content. Diluting the samples eliminated such inhibition and led to 95.8% sensitivity and 100% specificity of the assay. In conclusion, we proved the reliability of archived brain homogenates and post-mortem CSF samples for retrospective analysis by RT-QuIC after long-term storage, without changed reactivity.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1391
Author(s):  
Brent Race ◽  
Katie Williams ◽  
Chase Baune ◽  
James F. Striebel ◽  
Clayton W. Winkler ◽  
...  

In prion diseases, the spread of infectious prions (PrPSc) is thought to occur within nerves and across synapses of the central nervous system (CNS). However, the mechanisms by which PrPSc moves within axons and across nerve synapses remain undetermined. Molecular motors, including kinesins and dyneins, transport many types of intracellular cargo. Kinesin-1C (KIF5C) has been shown to transport vesicles carrying the normal prion protein (PrPC) within axons, but whether KIF5C is involved in PrPSc axonal transport is unknown. The current study tested whether stereotactic inoculation in the striatum of KIF5C knock-out mice (Kif5c−/−) with 0.5 µL volumes of mouse-adapted scrapie strains 22 L or ME7 would result in an altered rate of prion spreading and/or disease timing. Groups of mice injected with each strain were euthanized at either pre-clinical time points or following the development of prion disease. Immunohistochemistry for PrP was performed on brain sections and PrPSc distribution and tempo of spread were compared between mouse strains. In these experiments, no differences in PrPSc spread, distribution or survival times were observed between C57BL/6 and Kif5c−/− mice.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lesley Cheng ◽  
Camelia Quek ◽  
Xia Li ◽  
Shayne A. Bellingham ◽  
Laura J. Ellett ◽  
...  

AbstractPrion diseases are distinguished by long pre-clinical incubation periods during which prions actively propagate in the brain and cause neurodegeneration. In the pre-clinical stage, we hypothesize that upon prion infection, transcriptional changes occur that can lead to early neurodegeneration. A longitudinal analysis of miRNAs in pre-clinical and clinical forms of murine prion disease demonstrated dynamic expression changes during disease progression in the affected thalamus region and serum. Serum samples at each timepoint were collected whereby extracellular vesicles (EVs) were isolated and used to identify blood-based biomarkers reflective of pathology in the brain. Differentially expressed EV miRNAs were validated in human clinical samples from patients with human sporadic Creutzfeldt-Jakob disease (sCJD), with the molecular subtype at codon 129 either methionine-methionine (MM, n = 14) or valine-valine (VV, n = 12) compared to controls (n = 20). EV miRNA biomarkers associated with prion infection predicted sCJD with an AUC of 0.800 (85% sensitivity and 66.7% specificity) in a second independent validation cohort (n = 26) of sCJD and control patients with MM or VV subtype. This study discovered clinically relevant miRNAs that benefit diagnostic development to detect prion-related diseases and therapeutic development to inhibit prion infectivity.


2012 ◽  
Vol 153 (6) ◽  
pp. 214-221 ◽  
Author(s):  
Veronika Urbán S. ◽  
Elizabeta Benevolenskaya ◽  
Judit Kiss ◽  
Bernadett Sági ◽  
Beáta Hegyi ◽  
...  

Analysis of genomic sequences has clearly shown that the genomic differences among species do not explain the diversity of life. The genetic code itself serves as only a part of the dynamic complexity that results in the temporal and spatial changes in cell phenotypes during development. It has been concluded that the phenotype of a cell and of the organism as a whole is more influenced by environmentally-induced changes in gene activity than had been previously thought. The emerging field of epigenetics focuses on molecular marks on chromatin; called the epigenome, which serve as transmitters between the genome and the environment. These changes not only persist through multiple cell division cycles, but may also endure for multiple generations. Irregular alterations of the epigenome; called epimutations, may have a decisive role in the etiology of human pathologies such as malignancies and other complex human diseases. Epigenetics can provide the missing link between genetics, disease and the environment. Therefore, this field may have an increasing impact on future drug design and serve as a basis for new therapeutic/preventative approaches. Orv. Hetil., 2012, 153, 214–221.


Langmuir ◽  
2014 ◽  
Vol 30 (8) ◽  
pp. 2101-2108 ◽  
Author(s):  
Shaun P. Garland ◽  
Clayton T. McKee ◽  
Yow-Ren Chang ◽  
Vijay Krishna Raghunathan ◽  
Paul Russell ◽  
...  

1976 ◽  
Vol 21 (3) ◽  
pp. 563-578
Author(s):  
J.H. Temmink ◽  
J.G. Collard ◽  
J. Roosien ◽  
J.F. Van den Bosch

Two human lymphoblasts (Raji and EB3) and normal human peripheral lymphocytes were exposed to different concentrations of Concanavalin A and wheat germ agglutinin. The lectin-induced agglutination was determined and correlated with lectin-induced changes in the surface morphology of these cells as studied in a scanning electron microscope. Whenever the lectin induced high agglutinability in a cell type, it also invariably had a smoothing effect on the cell surface. In contrast, when cells did not agglutinate well with a certain lectin, their cell surface remained essentially rough (villous) after addition of the lectin. The correlation found between increased agglutinability and altered cell surface morphology upon treatment with certain lectins suggests that both phenomena result from one and the same process. Additional evidence for this postulate is presented.


2017 ◽  
Vol 474 (19) ◽  
pp. 3253-3267 ◽  
Author(s):  
Alana M. Thackray ◽  
Alzbeta Cardova ◽  
Hanna Wolf ◽  
Lydia Pradl ◽  
Ina Vorberg ◽  
...  

Inherited human prion diseases, such as fatal familial insomnia (FFI) and familial Creutzfeldt–Jakob disease (fCJD), are associated with autosomal dominant mutations in the human prion protein gene PRNP and accumulation of PrPSc, an abnormal isomer of the normal host protein PrPC, in the brain of affected individuals. PrPSc is the principal component of the transmissible neurotoxic prion agent. It is important to identify molecular pathways and cellular processes that regulate prion formation and prion-induced neurotoxicity. This will allow identification of possible therapeutic interventions for individuals with, or at risk from, genetic human prion disease. Increasingly, Drosophila has been used to model human neurodegenerative disease. An important unanswered question is whether genetic prion disease with concomitant spontaneous prion formation can be modelled in Drosophila. We have used pUAST/PhiC31-mediated site-directed mutagenesis to generate Drosophila transgenic for murine or hamster PrP (prion protein) that carry single-codon mutations associated with genetic human prion disease. Mouse or hamster PrP harbouring an FFI (D178N) or fCJD (E200K) mutation showed mild Proteinase K resistance when expressed in Drosophila. Adult Drosophila transgenic for FFI or fCJD variants of mouse or hamster PrP displayed a spontaneous decline in locomotor ability that increased in severity as the flies aged. Significantly, this mutant PrP-mediated neurotoxic fly phenotype was transferable to recipient Drosophila that expressed the wild-type form of the transgene. Collectively, our novel data are indicative of the spontaneous formation of a PrP-dependent neurotoxic phenotype in FFI- or CJD-PrP transgenic Drosophila and show that inherited human prion disease can be modelled in this invertebrate host.


Sign in / Sign up

Export Citation Format

Share Document