scholarly journals Advanced schemes for underdense plasma photocathode wakefield accelerators: pathways towards ultrahigh brightness electron beams

Author(s):  
G. G. Manahan ◽  
A. F. Habib ◽  
P. Scherkl ◽  
D. Ullmann ◽  
A. Beaton ◽  
...  

The ‘Trojan Horse’ underdense plasma photocathode scheme applied to electron beam-driven plasma wakefield acceleration has opened up a path which promises high controllability and tunability and to reach extremely good quality as regards emittance and five-dimensional beam brightness. This combination has the potential to improve the state-of-the-art in accelerator technology significantly. In this paper, we review the basic concepts of the Trojan Horse scheme and present advanced methods for tailoring both the injector laser pulses and the witness electron bunches and combine them with the Trojan Horse scheme. These new approaches will further enhance the beam qualities, such as transverse emittance and longitudinal energy spread, and may allow, for the first time, to produce ultrahigh six-dimensional brightness electron bunches, which is a necessary requirement for driving advanced radiation sources. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.

2013 ◽  
Author(s):  
B. Hidding ◽  
J. B. Rosenzweig ◽  
Y. Xi ◽  
B. O'Shea ◽  
G. Andonian ◽  
...  

Author(s):  
A. Martinez de la Ossa ◽  
R. W. Assmann ◽  
M. Bussmann ◽  
S. Corde ◽  
J. P. Couperus Cabadağ ◽  
...  

We present a conceptual design for a hybrid laser-driven plasma wakefield accelerator (LWFA) to beam-driven plasma wakefield accelerator (PWFA). In this set-up, the output beams from an LWFA stage are used as input beams of a new PWFA stage. In the PWFA stage, a new witness beam of largely increased quality can be produced and accelerated to higher energies. The feasibility and the potential of this concept is shown through exemplary particle-in-cell simulations. In addition, preliminary simulation results for a proof-of-concept experiment in Helmholtz-Zentrum Dresden-Rossendorf (Germany) are shown. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.


2019 ◽  
Vol 9 (13) ◽  
pp. 2626 ◽  
Author(s):  
Bernhard Hidding ◽  
Andrew Beaton ◽  
Lewis Boulton ◽  
Sebastién Corde ◽  
Andreas Doepp ◽  
...  

Fundamental similarities and differences between laser-driven plasma wakefield acceleration (LWFA) and particle-driven plasma wakefield acceleration (PWFA) are discussed. The complementary features enable the conception and development of novel hybrid plasma accelerators, which allow previously not accessible compact solutions for high quality electron bunch generation and arising applications. Very high energy gains can be realized by electron beam drivers even in single stages because PWFA is practically dephasing-free and not diffraction-limited. These electron driver beams for PWFA in turn can be produced in compact LWFA stages. In various hybrid approaches, these PWFA systems can be spiked with ionizing laser pulses to realize tunable and high-quality electron sources via optical density downramp injection (also known as plasma torch) or plasma photocathodes (also known as Trojan Horse) and via wakefield-induced injection (also known as WII). These hybrids can act as beam energy, brightness and quality transformers, and partially have built-in stabilizing features. They thus offer compact pathways towards beams with unprecedented emittance and brightness, which may have transformative impact for light sources and photon science applications. Furthermore, they allow the study of PWFA-specific challenges in compact setups in addition to large linac-based facilities, such as fundamental beam–plasma interaction physics, to develop novel diagnostics, and to develop contributions such as ultralow emittance test beams or other building blocks and schemes which support future plasma-based collider concepts.


Author(s):  
P. San Miguel Claveria ◽  
E. Adli ◽  
L. D. Amorim ◽  
W. An ◽  
C. E. Clayton ◽  
...  

Beam-driven plasma wakefield acceleration (PWFA) has demonstrated significant progress during the past two decades of research. The new Facility for Advanced Accelerator Experimental Tests (FACET) II, currently under construction, will provide 10 GeV electron beams with unprecedented parameters for the next generation of PWFA experiments. In the context of the FACET II facility, we present simulation results on expected betatron radiation and its potential application to diagnose emittance preservation and hosing instability in the upcoming PWFA experiments. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.


Author(s):  
Nasr A.M. Hafz ◽  
Song Li ◽  
Guangyu Li ◽  
Mohammad Mirzaie ◽  
Ming Zeng ◽  
...  

Ionization-induced electron injection in laser wakefield accelerators, which was recently proposed to lower the laser intensity threshold for electron trapping into the wake wave, has the drawback of generating electron beams with large and continuous energy spreads, severely limiting their future applications. Complex target designs based on separating the electron trapping and acceleration stages were proposed as the only way for getting small energy-spread electron beams. Here, based on the self-truncated ionization-injection concept which requires the use of unmatched laser–plasma parameters and by using tens of TW laser pulses focused onto a gas jet of helium mixed with low concentrations of nitrogen, we demonstrate single-stage laser wakefield acceleration of multi-hundred MeV electron bunches with energy spreads of a few percent. The experimental results are verified by PIC simulations.


Author(s):  
P. Muggli ◽  
W. D. Kimura ◽  
E. Kallos ◽  
T. C. Katsouleas ◽  
K. P. Kusche ◽  
...  

Author(s):  
Michael Stumpf ◽  
Matthias Melchger ◽  
Severin Georg Montag ◽  
Georg Pretzler

Abstract We present an optical setup for well-defined ionization inside a plasma such that precisely controlled spots of high electron density can be generated. We propose to use the setup for Trojan Horse Injection (or Plasma Photocathode Emission) where a collinear laser beam is needed to release electrons inside a plasma wakefield. The reflection-based setup allows a suitable manipulation of the laser near field without disturbing the spectral phase of the laser pulses. A required ionization state and volume can be reached by tuning the beam size, pulse duration and pulse energy. The ionization simulations enable a prediction of the ionization spot and are in good agreement with dedicated experiments which measured the number of electrons created during the laser-gas interaction.


2008 ◽  
Vol 100 (7) ◽  
Author(s):  
Efthymios Kallos ◽  
Tom Katsouleas ◽  
Wayne D. Kimura ◽  
Karl Kusche ◽  
Patric Muggli ◽  
...  

Author(s):  
N. Vafaei-Najafabadi ◽  
L. D. Amorim ◽  
E. Adli ◽  
W. An ◽  
C. I. Clarke ◽  
...  

This paper discusses the properties of electron beams formed in plasma wakefield accelerators through ionization injection. In particular, the potential for generating a beam composed of co-located multi-colour beamlets is demonstrated in the case where the ionization is initiated by the evolving charge field of the drive beam itself. The physics of the processes of ionization and injection are explored through OSIRIS simulations. Experimental evidence showing similar features are presented from the data obtained in the E217 experiment at the FACET facility of the SLAC National Laboratory. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.


Sign in / Sign up

Export Citation Format

Share Document