scholarly journals Transverse motions in sunspot super-penumbral fibrils

Author(s):  
R. J. Morton ◽  
K. Mooroogen ◽  
V. M. J. Henriques

Sunspots have played a key role in aiding our understanding of magnetohydrodynamic (MHD) wave phenomena in the Sun’s atmosphere, and it is well known they demonstrate a number of wave phenomena associated with slow MHD modes. Recent studies have shown that transverse wave modes are present throughout the majority of the chromosphere. Using high-resolution Ca II 8542 Å observations from the Swedish Solar Telescope, we provide the first demonstration that the chromospheric super-penumbral fibrils, which span out from the sunspot, also show ubiquitous transverse motions. We interpret these motions as transverse waves, in particular the MHD kink mode. We compile the statistical properties of over 2000 transverse motions to find distributions for periods and amplitudes, finding they are broadly consistent with previous observations of chromospheric transverse waves in quiet Sun fibrils. The very presence of the waves in super-penumbral fibrils raises important questions about how they are generated, and could have implications for our understanding of how MHD wave energy is transferred through the atmosphere of a sunspot. This article is part of the Theo Murphy meeting issue ‘High-resolution wave dynamics in the lower solar atmosphere’.

Author(s):  
D. B. Jess ◽  
P. H. Keys ◽  
M. Stangalini ◽  
S. Jafarzadeh

The magnetic and convective nature of the Sun’s photosphere provides a unique platform from which generated waves can be modelled, observed and interpreted across a wide breadth of spatial and temporal scales. As oscillations are generated in-situ or emerge through the photospheric layers, the interplay between the rapidly evolving densities, temperatures and magnetic field strengths provides dynamic evolution of the embedded wave modes as they propagate into the tenuous solar chromosphere. A focused science team was assembled to discuss the current challenges faced in wave studies in the lower solar atmosphere, including those related to spectropolarimetry and radiative transfer in the optically thick regions. Following the Theo Murphy international scientific meeting held at Chicheley Hall during February 2020, the scientific team worked collaboratively to produce 15 independent publications for the current Special Issue, which are introduced here. Implications from the current research efforts are discussed in terms of upcoming next-generation observing and high-performance computing facilities. This article is part of the Theo Murphy meeting issue ‘High-resolution wave dynamics in the lower solar atmosphere’.


2021 ◽  
Vol 923 (2) ◽  
pp. 225
Author(s):  
Richard J. Morton ◽  
Ajay K. Tiwari ◽  
Tom Van Doorsselaere ◽  
James A. McLaughlin

Abstract Propagating transverse waves are thought to be a key transporter of Poynting flux throughout the Sun’s atmosphere. Recent studies have shown that these transverse motions, interpreted as the magnetohydrodynamic kink mode, are prevalent throughout the corona. The associated energy estimates suggest the waves carry enough energy to meet the demands of coronal radiative losses in the quiescent Sun. However, it is still unclear how the waves deposit their energy into the coronal plasma. We present the results from a large-scale study of propagating kink waves in the quiescent corona using data from the Coronal Multi-channel Polarimeter (CoMP). The analysis reveals that the kink waves appear to be weakly damped, which would imply low rates of energy transfer from the large-scale transverse motions to smaller scales via either uniturbulence or resonant absorption. This raises questions about how the observed kink modes would deposit their energy into the coronal plasma. Moreover, these observations, combined with the results of Monte Carlo simulations, lead us to infer that the solar corona displays a spectrum of density ratios, with a smaller density ratio (relative to the ambient corona) in quiescent coronal loops and a higher density ratio in active-region coronal loops.


Author(s):  
Michele Righi ◽  
Giacomo Moretti ◽  
David Forehand ◽  
Lorenzo Agostini ◽  
Rocco Vertechy ◽  
...  

AbstractDielectric elastomer generators (DEGs) are a promising option for the implementation of affordable and reliable sea wave energy converters (WECs), as they show considerable promise in replacing expensive and inefficient power take-off systems with cheap direct-drive generators. This paper introduces a concept of a pressure differential wave energy converter, equipped with a DEG power take-off operating in direct contact with sea water. The device consists of a closed submerged air chamber, with a fluid-directing duct and a deformable DEG power take-off mounted on its top surface. The DEG is cyclically deformed by wave-induced pressure, thus acting both as the power take-off and as a deformable interface with the waves. This layout allows the partial balancing of the stiffness due to the DEG’s elasticity with the negative hydrostatic stiffness contribution associated with the displacement of the water column on top of the DEG. This feature makes it possible to design devices in which the DEG exhibits large deformations over a wide range of excitation frequencies, potentially achieving large power capture in a wide range of sea states. We propose a modelling approach for the system that relies on potential-flow theory and electroelasticity theory. This model makes it possible to predict the system dynamic response in different operational conditions and it is computationally efficient to perform iterative and repeated simulations, which are required at the design stage of a new WEC. We performed tests on a small-scale prototype in a wave tank with the aim of investigating the fluid–structure interaction between the DEG membrane and the waves in dynamical conditions and validating the numerical model. The experimental results proved that the device exhibits large deformations of the DEG power take-off over a broad range of monochromatic and panchromatic sea states. The proposed model demonstrates good agreement with the experimental data, hence proving its suitability and effectiveness as a design and prediction tool.


Energy ◽  
2016 ◽  
Vol 94 ◽  
pp. 857-858 ◽  
Author(s):  
Dina Silva ◽  
A. Rute Bento ◽  
Paulo Martinho ◽  
C. Guedes Soares

Weyl has shown that any gravitational wave of small amplitude may be regarded as the result of the superposition of waves of three types, viz.: (i) longitudinal-longitudinal; (ii) longitudinal-transverse; (iii) transverse-transverse. Eddington carried the matter much further by showing that waves of the first two types are spurious; they are “merely sinuosities in the co­ordinate system,” and they disappear on the adoption of an appropriate co-ordinate system. The only physically significant waves are transverse-transverse waves, and these are propagated with the velocity of light. He further considers electromagnetic waves and identifies light with a particular type of transverse-transverse wave. There is, however, a difficulty about the solution as left by Eddington. In its gravitational aspect light is not periodic. The gravitational potentials contain, in addition to periodic terms, an aperiodic term which increases without limit and which seems to indicate that light cannot be propagated indefinitely either in space or time. This is, of course, explained by noting that the propagation of light implies a transfer of energy, and that the consequent change in the distribution of energy will be reflected in a cumulative change in the gravitational field. But, if light cannot be propagated indefinitely, the fact itself is important, whatever be its explana­tion, for the propagation of light over very great distances is one of the primary facts which the relativity theory or any like theory must meet. In endeavouring to throw further light on this question, it seemed desirable to avoid the assumption that the amplitudes of the waves are small; terms neglected on this ground might well have a cumulative effect. All the solu­tions discussed in this paper are exact.


2019 ◽  
Vol 623 ◽  
pp. A32
Author(s):  
Roberto Soler

Observations show that transverse magnetohydrodynamic (MHD) waves and flows are often simultaneously present in magnetic loops of the solar corona. The waves are resonantly damped in the Alfvén continuum because of plasma and/or magnetic field nonuniformity across the loop. The resonant damping is relevant in the context of coronal heating, since it provides a mechanism to cascade energy down to the dissipative scales. It has been theoretically shown that the presence of flow affects the waves propagation and damping, but most of the studies rely on the unjustified assumption that the transverse nonuniformity is confined to a boundary layer much thinner than the radius of the loop. Here we present a semi-analytic technique to explore the effect of flow on resonant MHD waves in coronal flux tubes with thick nonuniform boundaries. We extend a published method, which was originally developed for a static plasma, in order to incorporate the effect of flow. We allowed the flow velocity to continuously vary within the nonuniform boundary from the internal velocity to the external velocity. The analytic part of the method is based on expressing the wave perturbations in the thick nonuniform boundary of the loop as a Frobenius series that contains a singular term accounting for the Alfvén resonance, while the numerical part of the method consists of solving iteratively the transcendental dispersion relation together with the equation for the Alfvén resonance position. As an application of this method, we investigated the impact of flow on the phase velocity and resonant damping length of MHD kink waves. With the present method, we consistently recover results in the thin boundary approximation obtained in previous studies. We have extended those results to the case of thick boundaries. We also explored the error associated with the use of the thin boundary approximation beyond its regime of applicability.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 405
Author(s):  
Yuan Wang ◽  
Lifeng Zhang ◽  
Jun Peng ◽  
Yun Zhang ◽  
Tongfeng Wei

Spectral characteristics of lower-stratospheric gravity waves generated in idealized mei-yu front and tropical cyclone (TC) are compared by performing high-resolution simulations. The results suggest that the systems which organize convection in different forms can generate waves with distinctly different presentation. The mei-yu front appears as a linear zonal wave source and gravity waves are dominated by cross-frontal (meridional) propagating components. The northward (southward) components have dominant meridional wavelengths of 125–333 km (>250 km), periods of 100–200 min (83–143 min), and phase speeds of 0–15 m s−1 (15–20 m s−1). The TC appears as a point wave source and gravity waves propagate equally in various horizontal directions. The waves exhibit greater power and broader spectral distributions compared with those in the mei-yu front, with dominant horizontal wavelengths longer than 62.5 km, periods of 33–600 min, and phase speeds slower than ~40 m s−1.


Author(s):  
Bas Buchner ◽  
Frederick Jaouen

This paper presents the initial investigations into the ‘Inverse’ concept for wave energy conversion, based on the maximisation of motions and green water. The ‘Inverse’ concept combines aspects of ‘overtopping’, ‘heaving’ and ‘pitching’ wave energy conversion concepts, but also adds specific aspects such as the use of green water. Instead of reducing the motions and green water as is done in normal offshore hydrodynamics, the ‘Inverse’ concepts tries to maximise the motions and green water to generate energy from the waves. Results are presented of frequency domain calculations for the motion (de-) optimisation. Improved Volume Of Fluid (iVOF) simulations are used to simulate the green water flow on the deck. It is concluded that the potential of the ‘Inverse’ concept is clear. As a result of the double connotation of the word ‘green’, this renewable energy concept could also be called the ‘green water’ concept. Further work needs to be carried out on the further optimisation of the concept.


Sign in / Sign up

Export Citation Format

Share Document