scholarly journals B–cell memory and the persistence of antibody responses

2000 ◽  
Vol 355 (1395) ◽  
pp. 345-350 ◽  
Author(s):  
Ian C. M. MacLennan ◽  
Carola García de Vinuesa ◽  
Montserrat Casamayor-Palleja

Antigens such as viral envelope proteins and bacterial exotoxins induce responses which result in the production of neutralizing antibody. These responses persist for years and provide highly efficient defence against reinfection. During these antibody responses a proportion of participating B cells mutate the genes that encode their immunoglobulin variable regions. This can increase the affinity of the antibody, but can also induce autoreactive B cells. Selection mechanisms operate which allow the cells with high affinity for the provoking antigen to persist, while other B cells recruited into the response die.

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244158
Author(s):  
WeiYu Lin ◽  
Wei-Ching Liang ◽  
Trung Nguy ◽  
Mauricio Maia ◽  
Tulika Tyagi ◽  
...  

The proactive generation of anti-idiotypic antibodies (anti-IDs) against therapeutic antibodies with desirable properties is an important step in pre-clinical and clinical assay development supporting their bioanalytical programs. Here, we describe a robust platform to generate anti-IDs using rabbit single B cell sorting-culture and cloning technology by immunizing rabbits with therapeutic drug Fab fragment and sorting complementarity determining regions (CDRs) specific B cells using designed framework control as a negative gate to exclude non-CDRs-specific B cells. The supernatants of cultured B cells were subsequently screened for binding to drug-molecule by enzyme-linked immunosorbent assay and the positive hits of B cell lysates were selected for cloning of their immunoglobulin G (IgG) variable regions. The recombinant monoclonal anti-IDs generated with this method have high affinity and specificity with broad epitope coverage and different types. The recombinant anti-IDs were available for assay development to support pharmacokinetic (PK) and immunogenicity studies within 12 weeks from the start of rabbit immunization. Using this novel rapid and efficient in-house approach we have generated a large panel of anti-IDs against a series of 11 therapeutic antibody drugs and successfully applied them to the clinical assay development.


1998 ◽  
Vol 188 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Thomas Fehr ◽  
Robert C. Rickert ◽  
Bernhard Odermatt ◽  
Jürgen Roes ◽  
Klaus Rajewsky ◽  
...  

Coligation of CD19, a molecule expressed during all stages of B cell development except plasmacytes, lowers the threshold for B cell activation with anti-IgM by a factor of 100. The cytoplasmic tail of CD19 contains nine tyrosine residues as possible phosphorylation sites and is postulated to function as the signal transducing element for complement receptor (CR)2. Generation and analysis of CD19 gene–targeted mice revealed that T cell–dependent (TD) antibody responses to proteinaceous antigens were impaired, whereas those to T cell–independent (TI) type 2 antigens were normal or even augmented. These results are compatible with earlier complement depletion studies and the postulated function of CD19. To analyze the role of CD19 in antiviral antibody responses, we immunized CD19−/− mice with viral antigens of TI-1, TI-2, and TD type. The effect of CD19 on TI responses was more dependent on antigen dose and replicative capacity than on antigen type. CR blocking experiments confirmed the role of CD19 as B cell signal transducer for complement. In contrast to immunization with protein antigens, infection of CD19−/− mice with replicating virus led to generation of specific germinal centers, which persisted for >100 d, whereas maintenance of memory antibody titers as well as circulating memory B cells was fully dependent on CD19. Thus, our study confirms a costimulatory role of CD19 on B cells under limiting antigen conditions and indicates an important role for B cell memory.


2014 ◽  
Vol 83 (1) ◽  
pp. 48-56 ◽  
Author(s):  
Rebecca A. Elsner ◽  
Christine J. Hastey ◽  
Nicole Baumgarth

CD4 T cells are crucial for enhancing B cell-mediated immunity, supporting the induction of high-affinity, class-switched antibody responses, long-lived plasma cells, and memory B cells. Previous studies showed that the immune response toBorrelia burgdorferiappears to lack robust T-dependent B cell responses, as neither long-lived plasma cells nor memory B cells form for months after infection, and nonswitched IgM antibodies are produced continuously during this chronic disease. These data prompted us to evaluate the induction and functionality ofB. burgdorferiinfection-induced CD4 TFHcells. We report that CD4 T cells were effectively primed and TFHcells induced afterB. burgdorferiinfection. These CD4 T cells contributed to the control ofB. burgdorferiburden and supported the induction ofB. burgdorferi-specific IgG responses. However, while affinity maturation of antibodies against a prototypic T-dependentB. burgdorferiprotein, Arthritis-related protein (Arp), were initiated, these increases were reversed later, coinciding with the previously observed involution of germinal centers. The cessation of affinity maturation was not due to the appearance of inhibitory or exhausted CD4 T cells or a strong induction of regulatory T cells.In vitroT-B cocultures demonstrated that T cells isolated fromB. burgdorferi-infected but notB. burgdorferi-immunized mice supported the rapid differentiation of B cells into antibody-secreting plasma cells rather than continued proliferation, mirroring the induction of rapid short-lived instead of long-lived T-dependent antibody responsesin vivo. The data further suggest thatB. burgdorferiinfection drives the humoral response away from protective, high-affinity, and long-lived antibody responses and toward the rapid induction of strongly induced, short-lived antibodies of limited efficacy.


2020 ◽  
Vol 205 (11) ◽  
pp. 3011-3022
Author(s):  
Shawna K. Brookens ◽  
Sung Hoon Cho ◽  
Paulo J. Basso ◽  
Mark R. Boothby

Author(s):  
Emilie Seydoux ◽  
Leah J. Homad ◽  
Anna J. MacCamy ◽  
K. Rachael Parks ◽  
Nicholas K. Hurlburt ◽  
...  

ABSTRACTB cells specific for the SARS-CoV-2 S envelope glycoprotein spike were isolated from a COVID-19-infected subject using a stabilized spike-derived ectodomain (S2P) twenty-one days post-infection. Forty-four S2P-specific monoclonal antibodies were generated, three of which bound to the receptor binding domain (RBD). The antibodies were minimally mutated from germline and were derived from different B cell lineages. Only two antibodies displayed neutralizing activity against SARS-CoV-2 pseudo-virus. The most potent antibody bound the RBD in a manner that prevented binding to the ACE2 receptor, while the other bound outside the RBD. Our study indicates that the majority of antibodies against the viral envelope spike that were generated during the first weeks of COVID-19 infection are non-neutralizing and target epitopes outside the RBD. Antibodies that disrupt the SARS-CoV-2 spike-ACE2 interaction can potently neutralize the virus without undergoing extensive maturation. Such antibodies have potential preventive/therapeutic potential and can serve as templates for vaccine-design.IN BRIEFSARS-CoV-2 infection leads to expansion of diverse B cells clones against the viral spike glycoprotein (S). The antibodies bind S with high affinity despite being minimally mutated. Thus, the development of neutralizing antibody responses by vaccination will require the activation of certain naïve B cells without requiring extensive somatic mutation.HighlightsAnalysis of early B cell response to SARS-CoV-2 spike proteinMost antibodies target non-neutralizing epitopesPotent neutralizing mAb blocks the interaction of the S protein with ACE2Neutralizing antibodies are minimally mutated


2021 ◽  
Vol 12 ◽  
Author(s):  
Timm Amendt ◽  
Omar El Ayoubi ◽  
Alexandra T. Linder ◽  
Gabriele Allies ◽  
Marc Young ◽  
...  

Mature B cells co-express IgM and IgD B cell antigen receptors (BCR) on their surface. While IgM BCR expression is already essential at early stages of development, the role of the IgD-class BCR remains unclear as most B cell functions appeared unchanged in IgD-deficient mice. Here, we show that IgD-deficient mice have an accelerated rate of B cell responsiveness as they activate antibody production within 24h after immunization, whereas wildtype (WT) animals required 3 days to activate primary antibody responses. Strikingly, soluble monovalent antigen suppresses IgG antibody production induced by multivalent antigen in WT mice. In contrast, IgD-deficient mice were not able to modulate IgG responses suggesting that IgD controls the activation rate of B cells and subsequent antibody production by sensing and distinguishing antigen-valences. Using an insulin-derived peptide we tested the role of IgD in autoimmunity. We show that primary autoreactive antibody responses are generated in WT and in IgD-deficient mice. However, insulin-specific autoantibodies were detected earlier and caused more severe symptoms of autoimmune diabetes in IgD-deficient mice as compared to WT mice. The rapid control of autoimmune diabetes in WT animals was associated with the generation of high-affinity IgM that protects insulin from autoimmune degradation. In IgD-deficient mice, however, the generation of high-affinity protective IgM is delayed resulting in prolonged autoimmune diabetes. Our data suggest that IgD is required for the transition from primary, highly autoreactive, to secondary antigen-specific antibody responses generated by affinity maturation.


Blood ◽  
2012 ◽  
Vol 119 (6) ◽  
pp. 1440-1449 ◽  
Author(s):  
Felix M. Wensveen ◽  
Ingrid A. M. Derks ◽  
Klaas P. J. M. van Gisbergen ◽  
Alex M. de Bruin ◽  
Joost C. M. Meijers ◽  
...  

Abstract The efficiency of humoral immune responses depends on the selective outgrowth of B cells and plasmacells that produce high affinity antibodies. The factors responsible for affinity maturation of B cell clones in the germinal center (GC) have been well established but selection mechanisms that allow clones to enter the GC are largely unknown. Here we identify apoptosis, regulated by the proapoptotic BH3-only member Noxa (Pmaip1), as a critical factor for the selection of high-affinity clones during B cell expansion after antigen triggering. Noxa is induced in activated B cells, and its ablation provides a survival advantage both in vitro and in vivo. After immunization or influenza infection, Noxa−/− mice display enlarged GCs, in which B cells with reduced antigen affinity accumulate. As a consequence, Noxa−/− mice mount low affinity antibody responses compared with wild-type animals. Importantly, the low affinity responses correlate with increased immunoglobulin diversity, and cannot be corrected by booster immunization. Thus, normal elimination of low affinity cells favors outgrowth of the remaining high-affinity clones, and this is mandatory for the generation of proper antibody responses. Manipulation of this process may alter the breadth of antibody responses after immunization.


2021 ◽  
Author(s):  
Nicolas A. Muena ◽  
Tamara Garcia-Salum ◽  
Catalina Pardo-Roa ◽  
Eileen F. Serrano ◽  
Jorge Levican ◽  
...  

The durability of circulating neutralizing antibody (nAb) responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and their boosting by vaccination remains to be defined. We show that outpatient and hospitalized SARS-CoV-2 seropositive individuals mount a robust neutralizing antibody (nAb) response that peaks at days 23 and 27 post-symptom onset, respectively. Although nAb titers remained higher in hospitalized patients, both study groups showed long-lasting nAb responses that can persist for up to 12 months after natural infection. These nAb responses in previously seropositive individuals can be significantly boosted through immunization with two doses of the CoronaVac (Sinovac) or one dose of the BNT162b2 (BioNTech/Pfizer) vaccines, suggesting a substantial induction of B cell memory responses. Noteworthy, three obese previously seropositive individuals failed to mount a booster response upon vaccination, warranting further studies in this population. Immunization of naive individuals with two doses of the CoronaVac vaccine or one dose of the BNT162b2 vaccine elicited similar levels of nAbs compared to seropositive individuals 4,2 to 13.3 months post-infection with SARS-CoV-2. Thus, this preliminary evidence suggests that both, seropositive and naive individuals, require two doses of CoronaVac to ensure the induction of robust nAb titers.


2020 ◽  
Author(s):  
Kaustuv Nayak ◽  
Kamalvishnu Gottimukkala ◽  
Sanjeev Kumar ◽  
Elluri Seetharami Reddy ◽  
Venkata Viswanadh Edara ◽  
...  

AbstractIndia is one of the countries most affected by the recent COVID-19 pandemic. Characterization of humoral responses to SARS-CoV-2 infection, including immunoglobulin isotype usage, neutralizing activity and memory B cell generation, is necessary to provide critical insights on the formation of immune memory in Indian subjects. In this study, we evaluated SARS-CoV-2 receptor-binding domain (RBD)-specific IgG, IgM, and IgA antibody responses, neutralization of live virus, and RBD-specific memory B cell responses in pre-pandemic healthy versus convalescent COVID-19 individuals from India. We observed substantial heterogeneity in the formation of humoral and B cell memory post COVID-19 recovery. While a vast majority (38/42, 90.47%) of COVID-19 recovered individuals developed SARS-CoV-2 RBD-specific IgG responses, only half of them had appreciable neutralizing antibody titers. RBD-specific IgG titers correlated with these neutralizing antibody titers as well as with RBD-specific memory B cell frequencies. In contrast, IgG titers measured against SARS-CoV-2 whole virus preparation, which includes responses to additional viral proteins besides RBD, did not show robust correlation. Our results suggest that assessing RBD-specific IgG titers can serve as a surrogate assay to determine the neutralizing antibody response. These observations have timely implications for identifying potential plasma therapy donors based on RBD-specific IgG in resource-limited settings where routine performance of neutralization assays remains a challenge.ImportanceOur study provides an understanding of SARS-CoV-2-specific neutralizing antibodies, binding antibodies and memory B cells in COVID-19 convalescent subjects from India. Our study highlights that PCR-confirmed convalescent COVID-19 individuals develop SARS-CoV-2 RBD-specific IgG antibodies, which correlate strongly with their neutralizing antibody titers. RBD-specific IgG titers, thus, can serve as a valuable surrogate measurement for neutralizing antibody responses. These finding have timely significance for selection of appropriate individuals as donors for plasma intervention strategies, as well as determining vaccine efficacy.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Daniela Frasca ◽  
Maria Romero ◽  
Denisse Garcia ◽  
Alain Diaz ◽  
Bonnie B. Blomberg

Abstract Background Aging is associated with increased intrinsic B cell inflammation, decreased protective antibody responses and increased autoimmune antibody responses. The effects of aging on the metabolic phenotype of B cells and on the metabolic programs that lead to the secretion of protective versus autoimmune antibodies are not known. Methods Splenic B cells and the major splenic B cell subsets, Follicular (FO) and Age-associated B cells (ABCs), were isolated from the spleens of young and old mice and left unstimulated. The RNA was collected to measure the expression of markers associated with intrinsic inflammation and autoimmune antibody production by qPCR. B cells and B cell subsets were also stimulated with CpG and supernatants collected after 7 days to measure autoimmune IgG secretion by ELISA. Metabolic measures (oxygen consumption rate, extracellular acidification rate and glucose uptake) were performed using a Seahorse XFp extracellular flux analyzer. Results Results have identified the subset of ABCs, whose frequencies and numbers increase with age and represent the most pro-inflammatory B cell subset, as the cell type mainly if not exclusively responsible for the expression of inflammatory markers and for the secretion of autoimmune antibodies in the spleen of old mice. Hyper-inflammatory ABCs from old mice are also hyper-metabolic, as compared to those from young mice and to the subset of FO B cells, a feature needed not only to support their higher expression of RNA for inflammatory markers but also their higher autoimmune antibody secretion. Conclusions These results identify a relationship between intrinsic inflammation, metabolism and autoimmune B cells and suggest possible ways to understand cellular mechanisms that lead to the generation of pathogenic B cells, that are hyper-inflammatory and hyper-metabolic, and secrete IgG antibodies with autoimmune specificities.


Sign in / Sign up

Export Citation Format

Share Document