scholarly journals Hyper‐metabolic B cells in the spleens of old mice make antibodies with autoimmune specificities

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Daniela Frasca ◽  
Maria Romero ◽  
Denisse Garcia ◽  
Alain Diaz ◽  
Bonnie B. Blomberg

Abstract Background Aging is associated with increased intrinsic B cell inflammation, decreased protective antibody responses and increased autoimmune antibody responses. The effects of aging on the metabolic phenotype of B cells and on the metabolic programs that lead to the secretion of protective versus autoimmune antibodies are not known. Methods Splenic B cells and the major splenic B cell subsets, Follicular (FO) and Age-associated B cells (ABCs), were isolated from the spleens of young and old mice and left unstimulated. The RNA was collected to measure the expression of markers associated with intrinsic inflammation and autoimmune antibody production by qPCR. B cells and B cell subsets were also stimulated with CpG and supernatants collected after 7 days to measure autoimmune IgG secretion by ELISA. Metabolic measures (oxygen consumption rate, extracellular acidification rate and glucose uptake) were performed using a Seahorse XFp extracellular flux analyzer. Results Results have identified the subset of ABCs, whose frequencies and numbers increase with age and represent the most pro-inflammatory B cell subset, as the cell type mainly if not exclusively responsible for the expression of inflammatory markers and for the secretion of autoimmune antibodies in the spleen of old mice. Hyper-inflammatory ABCs from old mice are also hyper-metabolic, as compared to those from young mice and to the subset of FO B cells, a feature needed not only to support their higher expression of RNA for inflammatory markers but also their higher autoimmune antibody secretion. Conclusions These results identify a relationship between intrinsic inflammation, metabolism and autoimmune B cells and suggest possible ways to understand cellular mechanisms that lead to the generation of pathogenic B cells, that are hyper-inflammatory and hyper-metabolic, and secrete IgG antibodies with autoimmune specificities.

Rheumatology ◽  
2020 ◽  
Vol 59 (9) ◽  
pp. 2616-2624
Author(s):  
Svenja Henning ◽  
Wietske M Lambers ◽  
Berber Doornbos-van der Meer ◽  
Wayel H Abdulahad ◽  
Frans G M Kroese ◽  
...  

Abstract Objectives Incomplete SLE (iSLE) patients display symptoms typical for SLE but have insufficient criteria to fulfil the diagnosis. Biomarkers are needed to identify iSLE patients that will progress to SLE. IFN type I activation, B-cell-activating factor (BAFF) and B-cell subset distortions play an important role in the pathogenesis of SLE. The aim of this cross-sectional study was to investigate whether B-cell subsets are altered in iSLE patients, and whether these alterations correlate with IFN scores and BAFF levels. Methods iSLE patients (n = 34), SLE patients (n = 41) with quiescent disease (SLEDAI ≤4) and healthy controls (n = 22) were included. Proportions of B-cell subsets were measured with flow cytometry, IFN scores with RT-PCR and BAFF levels with ELISA. Results Proportions of age-associated B-cells were elevated in iSLE patients compared with healthy controls and correlated with IgG levels. In iSLE patients, IFN scores and BAFF levels were significantly increased compared with healthy controls. Also, IFN scores correlated with proportions of switched memory B-cells, plasma cells and IgG levels, and correlated negatively with complement levels in iSLE patients. Conclusion In this cross-sectional study, distortions in B-cell subsets were observed in iSLE patients and were correlated with IFN scores and IgG levels. Since these factors play an important role in the pathogenesis of SLE, iSLE patients with these distortions, high IFN scores, and high levels of IgG and BAFF may be at risk for progression to SLE.


2020 ◽  
Vol 11 ◽  
Author(s):  
Víctor A. Sosa-Hernández ◽  
Jiram Torres-Ruíz ◽  
Rodrigo Cervantes-Díaz ◽  
Sandra Romero-Ramírez ◽  
José C. Páez-Franco ◽  
...  

BackgroundSARS-CoV-2 infection represents a global health problem that has affected millions of people. The fine host immune response and its association with the disease course have not yet been fully elucidated. Consequently, we analyze circulating B cell subsets and their possible relationship with COVID-19 features and severity.MethodsUsing a multiparametric flow cytometric approach, we determined B cell subsets frequencies from 52 COVID-19 patients, grouped them by hierarchical cluster analysis, and correlated their values with clinical data.ResultsThe frequency of CD19+ B cells is increased in severe COVID-19 compared to mild cases. Specific subset frequencies such as transitional B cell subsets increase in mild/moderate cases but decrease with the severity of the disease. Memory B compartment decreased in severe and critical cases, and antibody-secreting cells are increased according to the severity of the disease. Other non-typical subsets such as double-negative B cells also showed significant changes according to disease severity. Globally, these differences allow us to identify severity-associated patient clusters with specific altered subsets. Finally, respiratory parameters, biomarkers of inflammation, and clinical scores exhibited correlations with some of these subpopulations.ConclusionsThe severity of COVID-19 is accompanied by changes in the B cell subpopulations, either immature or terminally differentiated. Furthermore, the existing relationship of B cell subset frequencies with clinical and laboratory parameters suggest that these lymphocytes could serve as potential biomarkers and even active participants in the adaptive antiviral response mounted against SARS-CoV-2.


2018 ◽  
Vol 2 ◽  
pp. 97 ◽  
Author(s):  
Luke Muir ◽  
Paul F. McKay ◽  
Velislava N. Petrova ◽  
Oleksiy V. Klymenko ◽  
Sven Kratochvil ◽  
...  

Background:Human memory B cells play a vital role in the long-term protection of the host from pathogenic re-challenge. In recent years the importance of a number of different memory B cell subsets that can be formed in response to vaccination or infection has started to become clear. To study memory B cell responses, cells can be culturedex vivo,allowing for an increase in cell number and activation of these quiescent cells, providing sufficient quantities of each memory subset to enable full investigation of functionality. However, despite numerous papers being published demonstrating bulk memory B cell culture, we could find no literature on optimised conditions for the study of memory B cell subsets, such as IgM+memory B cells.Methods:Following a literature review, we carried out a large screen of memory B cell expansion conditions to identify the combination that induced the highest levels of memory B cell expansion. We subsequently used a novel Design of Experiments approach to finely tune the optimal memory B cell expansion and differentiation conditions for human memory B cell subsets. Finally, we characterised the resultant memory B cell subpopulations by IgH sequencing and flow cytometry.Results:The application of specific optimised conditions induce multiple rounds of memory B cell proliferation equally across Ig isotypes, differentiation of memory B cells to antibody secreting cells, and importantly do not alter the Ig genotype of the stimulated cells. Conclusions:Overall, our data identify a memory B cell culture system that offers a robust platform for investigating the functionality of rare memory B cell subsets to infection and/or vaccination.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Daniela Frasca ◽  
Suresh Pallikkuth ◽  
Savita Pahwa

Abstract Background HIV infection induces inflammaging and chronic immune activation (IA), which are negatively associated with protective humoral immunity. Similar to HIV, aging is also associated with increased inflammaging and IA. The metabolic requirements of B cell responses in HIV infected (HIV+) individuals are not known, although metabolic abnormalities have been reported in these individuals. How these metabolic abnormalities are exacerbated by aging is also not known. Methods B cells were isolated by magnetic sorting from the blood of young and elderly HIV + individuals, as well as from the blood of age-matched healthy controls. We evaluated the composition of the B cell pool by flow cytometry, the expression of RNA for pro-inflammatory and metabolic markers by qPCR and their metabolic status using a Seahorse XFp extracellular flux analyzer. Results In this study we have evaluated for the first time the metabolic phenotype of B cells from young and elderly HIV + individuals as compared to those obtained from age-matched healthy controls. Results show that the B cell pool of HIV + individuals is enriched in pro-inflammatory B cell subsets, expresses higher levels of RNA for pro-inflammatory markers and is hyper-metabolic, as compared to healthy controls, and more in elderly versus young HIV + individuals, suggesting that this higher metabolic phenotype of B cells is needed to support B cell IA. We have identified the subset of Double Negative (DN) B cells as the subset mainly responsible for this hyper-inflammatory and hyper-metabolic profile. Conclusions Our results identify a relationship between intrinsic B cell inflammation and metabolism in HIV + individuals and suggest that metabolic pathways in B cells from HIV + individuals may be targeted to reduce inflammaging and IA and improve B cell function and antibody responses.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2085-2085
Author(s):  
Rao H Prabhala ◽  
Srikanth Talluri ◽  
Megan Stekla ◽  
Andreea Negroiu ◽  
Michael Buonopane ◽  
...  

Abstract One of the most prominent features of multiple myeloma (MM) has been immune deficiency which predisposes patients to infectious complications and suppresses development of anti-MM immune responses. We and others have previously described the T cell dysfunction in Th1, Treg and Th17 cells, plasmacytoid dendritic cells and myeloid-derived suppressor cells (MDSC). However, the most fundamental and long identified deficiency is in the humoral immune response. Suppression of uninvolved immunoglobulins (UIgs) have been well described (i.e. suppression of serum IgA and IgM in IgG myeloma); and antibody responses to vaccination have been inadequate. However, very limited information is available regarding B cell function and how UIgs are suppressed in myeloma. We have now evaluated six different B cell subsets (B1a, B1b, B2, Breg, IRA-B, and MZ) in peripheral blood (PBMC) and bone marrow (BM) to understand alterations in B cell immune function in MM. We have observed significantly lower ratio of B2 (normal B cell-subset) and B1a (natural antibody-producing cells) subsets (10±4 vs 57±17; p < 0.05) and B2 and Breg (regulatory B cell-subset) subsets (14±4 vs 45±13; p< 0.05) in PBMC from MM patients (N=19) compared with healthy donor (N=33) respectively. Similar results were observed in BM samples from MM patients (N=18) compared with healthy donors (N=12); B2/B1a subset (2.4±0.6 vs 8±1.3; p < 0.05) and B2/Breg subset (8±1.4 vs 43.7±8.4; p< 0.05) respectively. To understand whether MM cells directly or indirectly alter B cell-subsets, we incubated myeloma cells (N=4) with healthy donor PBMCs, and analyzed B cell subsets after 3 days. We observed significant elevation in B1 subset (2.5 fold of control) and reduced B2 subset (89±3% of control). When we incubated PBMCs with IL-17A over-expressing MM cells (N=3), we observed further significant reduction in B2 subset (74% of control). When normal PBMCs are cultured in IL-17A (N=4) we observed significantly increased IL-10-producing Breg subset (28% of control). Similarly, co-culture of healthy B cells with MDSC led to significant increase (3.8 times) in Breg cell- population (N=3) compared with control group. To study the impact of B cell dysfunction on T cell function in MM, we activated normal PBMC via anti-CD3 antibody, in the presence or absence of B cells, and measured intra-cellular IFN-γ levels in CD69+ cells. We observed that the absence of B cells significantly inhibited interferon-producing T cells compared to control (by 43%; p<0.05). Importantly, following removal of CD25+ cells (Tregs and activated memory T cells), with or without B cells, we did not observe any difference in the inhibition of IFN-γ, indicating that B cells influence memory T cells rather than naïve T cells for the production of IFN-γ. To evaluate impact of lenalidomide on this interaction, we stimulated purified normal donor CD45RO memory T cells with Th1 polarizing cocktail in the presence or absence of purified normal B cells or B cells from MM patient (MM-B) in presence of lenalidomide and observed thatlenalidomide significantly improved MM-B cell-mediated IFN-γ-producing Th1 responses (by 32%, p<0.05) compared to normal B cell-mediated Th1 responses. In an effort to evaluate whether any therapy may improve the B cell function, we cultured normal PBMCs in the presence of lenalidomide (N=9) and observed reduction in Breg subset by 40% of control. To evaluate the effect of therapy on B cell-subsets in MM, we analyzed B cell subsets in PBMC from newly-diagnosed and lenalidomide-treated MM patients and observed that lenalidomide-treated group showed significant (p<0.05) improvement in B cell subsets (increased B2 and lower B1 cells) even before clinical response. These results suggest that immunomodulatory agents may be able to re-program humoral immunity in these patients. In summary, we report that the myeloma cell driven skewed B cell subset distribution with consequent B cell dysfunction drives the observed abnormalities in humoral/cell mediated immunity. The current therapeutic interventions, besides providing deep clinical responses, may also improve B cell function with impact on long term outcome. Disclosures No relevant conflicts of interest to declare.


2008 ◽  
Vol 2 ◽  
pp. CMO.S615 ◽  
Author(s):  
Linda M. Pilarski ◽  
Eva Baigorri ◽  
Michael J. Mant ◽  
Patrick M. Pilarski ◽  
Penelope Adamson ◽  
...  

Potential progenitor B cell compartments in multiple myeloma (MM) are clinically important. MM B cells and some circulating MM plasma cells express CD20, predicting their clearance by treatment with anti-CD20. Here we describe two types of clonotypic CD20+ B cell in peripheral blood of myeloma patients, identified by their expression of CD19 and CD20 epitopes, their expression of CD45RA and their light scatter properties. Thus, the circulating component of the MM clone includes at least two distinct CD19+ CD20+ B cell compartments, as well as CD138+CD20+ plasma cells. To determine whether either or both B cell subsets and the CD20+ plasma cell subset were depleted by anti-CD20 therapy, they were evaluated before, during and after treatment of patients with rituximab (anti-CD20), followed by quantifying B cell subsets over a 5 month period during and after treatment. Overall, all three types of circulating B lineage cells persist despite treatment with rituximab. The inability of rituximab to prolong survival in MM may result from this failure to deplete CD20+ B and plasma cells in MM.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 80-80
Author(s):  
Mohamed-Rachid Boulassel ◽  
Bader Yassine-Diab ◽  
Don Healey ◽  
Charles Nicolette ◽  
Rafick-Pierre Sékaly ◽  
...  

Abstract We demonstrated the enhancement of CD8-specific responses following the administration of an immune-based therapy consisting of dendritic cells (DC) electroporated with autologous amplified HIV-1 RNA and CD40 ligand (CD40 L) RNA manufactured by the Arcelis™ process in HIV patients receiving antiretroviral therapy (ART). We conducted a sub study on circulating B cell populations to further assess changes induced by this autologous DC therapy as CD40L is a major B cell co-stimulatory factor. To this end, we assessed B cell subset changes in relation to the proliferative capacity of CD4+ and CD8+ T cells response to DC targets containing the 4 HIV-1 antigens (Gag, Vpr, Rev, Nef). The co-expression of CD19, CD38, IgD, CD10, CD23, CD27, CD5, and CD138 were analyzed by multi-parametric flow cytometry to assess circulating B cell subsets such as naïve resting B-cells (Bm1), activated naïve B cells (Bm2), GC founder cells (Bm2’), centroblasts and centrocytes (Bm3 and Bm4), early memory B cells (eBm5), memory B cells (Bm5), IgD memory cells, plasma cells, and B-1 cells. Changes in B cells subsets were analyzed before and after the four intradermal injections of this immunotherapeutic product containing 1.2 × 107 DC. Ten ART treated subjects with undetectable viral load (< 50 copies/ml), median CD4+ count of 440 cells/μl (range: 316–1102), and with a CD4+ nadir > 200 cells/μl were studied. Throughout the study, no significant changes in CD4+ cell count, CD4/CD8 ratio, and no viral blips were noticed. The percentage of total B cells, Bm1, Bm2, Bm2′, eBm5, IgD memory, plasma cells, and B-1 cell subsets did not significantly change. However, a decrease in the percentage of Bm3 and Bm4 cells was found (0.36 [0.06–0.86] versus 0.11 [0.04–0.36]; P=0.05). Conversely, an important increase in the Bm5 cell subset was evidenced (10.4 [1.6–24.2] versus 18.1 [5.1–27.5]; P=0.005) suggesting a proliferation of B memory cells induced by DC immunization. In addition, the multifunctional and polyvalent CD8+ T cell proliferative responses to the 4 HIV genes used in this immunotherapy were noticed in 8 out of 9 subjects available for analysis and characterized by an effector memory phenotype. No CD4+ T cell immune responses were detected, consistent with the endogenous HLA class I loading of the antigens. Collectively, these results indicate that this immunotherapy induces an increase in the B memory cell population in the absence of inducing any clinically apparent autoimmunity along with strong HIV specific multifunctional CD8+ T cell specific immune responses.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3393-3393
Author(s):  
Jonathan Carmichael ◽  
Clive R Carter ◽  
Christopher Parrish ◽  
Charlotte Kallmeyer ◽  
Sylvia Feyler ◽  
...  

Abstract Multiple myeloma (MM) is characterized by an increased risk of infection due to the immunosuppressive effect of the disease and conjointly of therapy. Furthermore, there is impaired responses to vaccination to counter the infection risk. The factors that underpin defective B-cell homeostasis and effective humoral immunity are not clear, nor are the extent of the defects. Also, the level of impaired humoral immunity in MGUS is not fully understood. The aim of this study was to delineate the circulating B-cell populations and recall antibody responses in patients with MGUS & MM, compared to age-matched controls, correlating with the responsiveness to vaccinations, incidence of infective complications and concomitant therapy. We performed comprehensive B-cell immunophenotyping by multi-parameter flow cytometry of peripheral blood samples from patients with MGUS (n=16), asymptomatic MM (n=18) and MM (n=108) with a median age of 63 years (range 38-94) comparing them to age-matched controls (n=9). B-cell subsets included naïve (CD19+CD27-), memory (CD19+CD27+; non-switch CD19+IgD+CD27+, switch CD19+IgD-CD27+), transitional (CD19+CD27-CD24hiCD38hi) & regulatory (CD19+CD27+CD24hi) B-cells. Serum uninvolved total IgG, IgM & IgA levels along with vaccine-specific antibody responses were analysed. There is a progressive decrease in the uninvolved immunoglobulin classes with significant reduction in total IgA (p=0.006) and IgM levels (p=0.007) in aMM/MM compared to MGUS & control (Figure 1). When anti-pneumococcal antibodies were measured, only 30% of aMM/MM patients had adequate protective levels compared to 79% of age-matched controls, with 40% of aMM/MM patients with inadequate levels experiencing recurrent respiratory tract infections compared to 25% of aMM/MM patients with adequate proactive antibodies. Patients with MGUS, aMM and MM have lower total B-cell numbers compared to controls (1-way ANOVA p=0.004; Figure 1). The reduction in B-cell numbers were primarily the consequence of reduced memory B-cells (percentage and absolute 1-way ANOVA p<0.0001), noted in both MGUS and aMM/MM but a progressive reduction with increasing disease activity (MGUS>aMM>MM). Furthermore, a correlation with total IgG levels & memory B-cell numbers is evident (r2=-0.053) & progressive reduction in memory B-cell numbers is seen with advancing cycles of therapy. The ratio of switch:non-switch memory B-cells is unaltered (control 1.05, MGUS 0.53, aMM 1.41 & MM 1.49; 1-way ANOVA p=ns). Conversely, there is a compensatory increase in the percentage of transitional B-cells when increasing disease stage is compared to controls (control 7.38% (95%ci 4.9,9.9) vs MGUS 14.0% (95%ci 7.4, 20.7) vs aMM 14.95% (95%ci 8, 21.9); 1-way ANOVA p<0.001) but a reduction is noted in MM (5.82%, 95%ci 4.5,7.2; p<0.0001), primarily being driven by sequential lines of therapy. As a consequence, the ratio of Memory:transitional B-cells is significantly reduced in aMM/MM compared to MGUS & controls (control 10.35, MGUS 20.46, aMM 7.74 & MM 4.57; 1-way ANOVA p=0.006), associated with increasing incidence of bacterial infections. A non-significant correlation is seen between transitional B-cells and total uninvolved immunoglobulin levels and with recall responses to vaccinations. There is a progressive decrease in the CD19+CD27+CD24hi B-cell subset between control and plasma cell dyscrasias (control 20.4% (95%ci 15.5,25.2), MGUS 14.0% (95%ci 7.4, 20.7), aMM 14.95% (95%ci 8, 21.9) & MM 5.82%, 95%ci 4.5,7.2; p<0.0001), primarily being driven by sequential lines of therapy and associated with increased incidence of infection. This study illustrates that patients with myeloma demonstrate reduced total circulating B-cells primarily as a consequence of reduced memory B-cells, associated with reduced immunoglobulin and recall antibody responses. This is associated with increased incidence of bacterial infections and is worsened by sequential exposure to lymphodepleting therapies. Of particular importance is the identified aberration in B-cell subsets seen in MGUS compared with age-matched control, indicative of humoral immune dysregulation highlighting that MGUS may not be an immunologically inert disorder. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Vol 213 (13) ◽  
pp. 3007-3024 ◽  
Author(s):  
Kyoko Hayakawa ◽  
Anthony M. Formica ◽  
Joni Brill-Dashoff ◽  
Susan A. Shinton ◽  
Daiju Ichikawa ◽  
...  

In mice, generation of autoreactive CD5+ B cells occurs as a consequence of BCR signaling induced by (self)-ligand exposure from fetal/neonatal B-1 B cell development. A fraction of these cells self-renew and persist as a minor B1 B cell subset throughout life. Here, we show that transfer of early generated B1 B cells from Eμ-TCL1 transgenic mice resulted in chronic lymphocytic leukemia (CLL) with a biased repertoire, including stereotyped BCRs. Thus, B1 B cells bearing restricted BCRs can become CLL during aging. Increased anti-thymocyte/Thy-1 autoreactive (ATA) BCR cells in the B1 B cell subset by transgenic expression yielded spontaneous ATA B-CLL/lymphoma incidence, enhanced by TCL1 transgenesis. In contrast, ATA B-CLL did not develop from other B cell subsets, even when the identical ATA BCR was expressed on a Thy-1 low/null background. Thus, both a specific BCR and B1 B cell context were important for CLL progression. Neonatal B1 B cells and their CLL progeny in aged mice continued to express moderately up-regulated c-Myc and down-regulated proapoptotic Bmf, unlike most mature B cells in the adult. Thus, there is a genetic predisposition inherent in B-1 development generating restricted BCRs and self-renewal capacity, with both features contributing to potential for progression to CLL.


Blood ◽  
2011 ◽  
Vol 118 (5) ◽  
pp. 1294-1304 ◽  
Author(s):  
Yi Hao ◽  
Patrick O'Neill ◽  
Martin S. Naradikian ◽  
Jean L. Scholz ◽  
Michael P. Cancro

Abstract We have discovered a distinct mature B-cell subset that accumulates with age, which we have termed age-associated B cells. These cells comprise up to 30% of mature B cells by 22 months. Despite sharing some features with other mature B-cell subsets, they are refractory to BCR and CD40 stimulation. Instead, they respond to TLR9 or TLR7 stimulation and divide maximally on combined BCR and TLR ligation, leading to Ig production and preferential secretion of IL-10 and IL-4. Although similar to follicular B cells in both B-lymphocyte stimulator (BLyS) receptor expression and BLyS binding capacity, these cells do not rely on BLyS for survival. They are neither cycling nor the result of intrinsically altered B lymphopoiesis in aged BM, but instead appear to be generated from mature B cells that exhaustively expand during the individual's lifetime. Finally, they present Ag effectively and favor polarization to a TH17 profile. Together, these findings reveal that while the magnitude of the mature primary B-cell niche is maintained with age, it is increasingly occupied by cells refractory to BCR-driven activation yet responsive to innate receptor stimulation.


Sign in / Sign up

Export Citation Format

Share Document