scholarly journals Imaging the cell surface and its organization down to the level of single molecules

2013 ◽  
Vol 368 (1611) ◽  
pp. 20120027 ◽  
Author(s):  
David Klenerman ◽  
Andrew Shevchuk ◽  
Pavel Novak ◽  
Yuri E. Korchev ◽  
Simon J. Davis

Determining the organization of key molecules on the surface of live cells in two dimensions and how this changes during biological processes, such as signalling, is a major challenge in cell biology and requires methods with nanoscale spatial resolution and high temporal resolution. Here, we review biophysical tools, based on scanning ion conductance microscopy and single-molecule fluorescence and the combination of both of these methods, which have recently been developed to address these issues. We then give examples of how these methods have been be applied to provide new insights into cell membrane organization and function, and discuss some of the issues that will need to be addressed to further exploit these methods in the future.

2009 ◽  
Vol 60-61 ◽  
pp. 27-30 ◽  
Author(s):  
Li Ping Liu ◽  
Yun Dou Wang ◽  
Yan Jun Zhang

In cell biology and medicine study, continuous high spatial resolution observations of living cells would greatly aid the elucidation of the relationship between structure and function of cells. The development of scanning probe microscopy (SPM) has opened up a new era of life science and has been used to develop a family of related methods that allow studying of cell structure and function on nanometer scale. Scanning ion conductance microscopy (SICM) is a new member of such SPM family and can be used to obtain high-resolution non-contact images of the surface of live cells under physiological conditions, and hence allows the relationship between cell microstructure and function to be probed. In this review, we concisely introduce the principles of SICM and its applications in nanobiology and nanomedicine.


2012 ◽  
Vol 26 (05) ◽  
pp. 1130003 ◽  
Author(s):  
FRANKLIN ANARIBA ◽  
JOON HYUNG ANH ◽  
GOO-EUN JUNG ◽  
NAM-JOON CHO ◽  
SANG-JOON CHO

Scanning probe microscopy (SPM) techniques represent one of the most promising approaches to probe the physical and chemical properties of nanoscale materials. The growing convergence of physics and biology has demanded nanotechnology tools to understand the fundamental physics of biological systems. Despite the advantages of SPM techniques, there have been challenges with its application to characterization of biological specimens. In recent times, the development of one class of SPM technique, scanning ion conductance microscopy (SICM), has overcome these limitations and enabled noninvasive, nanoscale investigation of live cells. In this review article, we present the theory behind the SICM operating principles and data modeling. Based on this framework, we discuss recent research advances where the SICM technique has proven technically superior. SICM applications discussed herein include imaging of cell topography, monitoring of live cell dynamics, mechanical stimulation of live cells, and surface patterning. Additional findings on the combination of SICM with other SPM techniques as well as patch clamp electrophysiology are presented in the context of building integrated knowledge on the structure and function of live cells. In summary, SICM bridges physics and biology to enable a range of important biomedical applications.


2010 ◽  
Vol 38 (4) ◽  
pp. 914-918 ◽  
Author(s):  
Angel Orte ◽  
Richard Clarke ◽  
David Klenerman

Two-colour coincidence detection (TCCD) is a form of single-molecule fluorescence developed to sensitively detect and characterize associated biomolecules without any separation, in solution, on the cell membrane and in live cells. In the present short review, we first explain the principles of the method and then describe the application of TCCD to a range of biomedical problems and how this method may be developed further in the future to try to monitor biological processes in live cells.


2011 ◽  
Vol 17 (S2) ◽  
pp. 236-237
Author(s):  
G De Filippi ◽  
C Moore

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


Nanoscale ◽  
2021 ◽  
Author(s):  
Feng Chen ◽  
Jin He ◽  
Prakash Manandhar ◽  
Yizi Yang ◽  
Peidang Liu ◽  
...  

The distribution of surface charge and potential of cell membrane plays an indispensable role in cellular activities. However, probing surface charge of live cells in physiological conditions, until recently, remains...


2020 ◽  
Author(s):  
Bin Cao ◽  
Guanshi Wang ◽  
Jieru Li ◽  
Alexandros Pertsinidis

Understanding cellular structure and function requires live-cell imaging with high spatio-temporal resolution and high detection sensitivity. Direct visualization of molecular processes using single-molecule/super-resolution techniques has thus been transformative. However, extracting the highest-resolution 4D information possible from weak and dynamic fluorescence signals in live cells remains challenging. For example, some of the highest spatial resolution methods, e.g. interferometric (4Pi) approaches1-6 can be slow, require high peak excitation intensities that accelerate photobleaching or suffer from increased out-of-focus background. Selective-plane illumination (SPIM)7-12 reduces background, but most implementations typically feature modest spatial, especially axial, resolution. Here we develop 3D interferometric lattice light-sheet (3D-iLLS) imaging, a technique that overcomes many of these limitations. 3D-iLLS provides, by virtue of SPIM, low light levels and photobleaching, while providing increased background suppression and significantly improved volumetric imaging/sectioning capabilities through 4Pi interferometry. We demonstrate 3D-iLLS with axial resolution and single-particle localization precision down to <100nm (FWHM) and <10nm (1σ) respectively. 3D-iLLS paves the way for a fuller elucidation of sub-cellular phenomena by enhanced 4D resolution and SNR live imaging.


2020 ◽  
Author(s):  
B. Li ◽  
A. Ponjavic ◽  
W. H. Chen ◽  
L. Hopkins ◽  
C. Hughes ◽  
...  

AbstractDetection of single molecules in biological systems has rapidly increased in resolution over the past decade. However, delivery of single molecules has remained a challenge. Currently there is no effective method that can both introduce a precise amount of molecules onto or into a single cell at a defined position, and then image the cellular response. Here we have combined light sheet microscopy with local delivery, using a nanopipette, to accurately deliver individual proteins to a defined position. We call this method local delivery selective plane illumination microscopy (ldSPIM). ldSPIM uses a nanopipette and the ionic feedback current at the nanopipette tip to control the position from which molecules are delivered. The number of proteins delivered can be controlled by varying the voltage applied. For single-molecule detection, we implemented single-objective SPIM using a reflective atomic force microscopy cantilever to create a 2µm thin sheet. Using this setup, we demonstrate that ldSPIM can deliver single fluorescently-labeled proteins onto the plasma membrane of HK293 cells or into the cytoplasm. Next, we deposited aggregates of amyloid-β, which causes proteotoxicity relevant to Alzheimer’s disease, onto a single macrophage stably expressing a MyDD88-eGFP fusion construct. Whole-cell imaging in 3D mode enables live detection of MyDD88 accumulation and formation of MyDDosome signaling complexes, as a result of aggregate-induced triggering of toll-like receptor 4. Overall, we demonstrate a novel multifunctional imaging system capable of precise delivery of single proteins to a specific location on the cell surface or inside the cytoplasm and high-speed 3D detection at single-molecule resolution within live cells.Statement of SignificanceThis paper describes and validates a new method to study biological processes based on the controlled local delivery of molecules onto or into the cell, combined with single molecule imaging using light sheet microscopy. we not only demonstrate the instrument’s capability of delivering controlled numbers of molecules to a defined position, down to the level of single molecules, but also its potential in study of the triggering of the innate immune response by protein aggregates, a key process in the development of neurodegenerative diseases such as Alzheimer’s disease. The same approach could be applied to a wide range of other important biological processes allowing them to be followed in live cells in real-time, hence it will be of great interest to the biophysical community.


2010 ◽  
Vol 12 (34) ◽  
pp. 10012 ◽  
Author(s):  
Yasufumi Takahashi ◽  
Yumi Murakami ◽  
Kuniaki Nagamine ◽  
Hitoshi Shiku ◽  
Shigeo Aoyagi ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 273
Author(s):  
Lixin Liu ◽  
Meijie Qi ◽  
Yujie Liu ◽  
Xinzhu Xue ◽  
Danni Chen ◽  
...  

Fluorescence imaging is an important and efficient tool in cell biology and biomedical research. In order to observe the dynamics of biological macromolecules such as DNA, RNA and proteins in live cells, it is extremely necessary to surpass the Abbe diffraction limit in microscopic imaging. Single-molecule localization microscopy (SMLM) is a sort of super-resolution imaging technique that can obtain a large number of images of sparse fluorescent molecules by the use of photoswitchable fluorescent probes and single-molecule localization technology. The center positions of fluorescent molecules in the images are precisely located, and then the entire sample pattern is reconstructed with super resolution. In this paper, we present a single-molecule localization algorithm (SMLA) that is based on blind deconvolution and centroid localization (BDCL) method. Single-molecule localization and image reconstruction of 15,000/9990 frames of original images of tubulins are accomplished. In addition, this fluorophore localization algorithm is used to localize high particle-density images. The results show that our BDCL-SMLA method is a reasonable attempt and useful method for SMLM imaging when the imaging system is unknown.


Sign in / Sign up

Export Citation Format

Share Document