scholarly journals Probiotics, antibiotics and the immune responses to vaccines

2015 ◽  
Vol 370 (1671) ◽  
pp. 20140144 ◽  
Author(s):  
Ira Praharaj ◽  
Sushil M. John ◽  
Rini Bandyopadhyay ◽  
Gagandeep Kang

Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome.

2018 ◽  
Vol 132 (11) ◽  
pp. 1169-1177 ◽  
Author(s):  
Amrita Bhattacharjee ◽  
Timothy W. Hand

Oral vaccines (OVs), provide protection against pathogens that infect mucosal surfaces and their potency relies on their capacity to elicit T- and B-cell responses directed to these surfaces. Oral vaccination efficacy has been found to vary considerably with differences in geographical locations and socioeconomic status. Specifically, in children living in resource-poor countries, undernourishment and chronic gastrointestinal (GI) infection are associated with the failure of OVs, which is a tragic outcome for the children who would benefit most from mucosal-based protection from infection. Both undernutrition and GI infection have been shown to profoundly affect the microbiota, inducing ‘dysbiosis’ characterized by narrowed bacterial diversity and increased frequency of bacterial clades associated with the induction of inflammation. Recent studies have demonstrated that the microbiota exerts a profound effect on the development of mucosal immune responses. Therefore, it seems likely that OV failure in resource-poor regions is affected by alterations to the immune response driven by dysbiotic changes to the microbiota. Here, we review the contribution of the microbiota to OV efficacy in the context of diet and GI infection.


2016 ◽  
Author(s):  
Steven K. Lundy ◽  
Alison Gizinski ◽  
David A. Fox

The immune system is a complex network of cells and mediators that must balance the task of protecting the host from invasive threats. From a clinical perspective, many diseases and conditions have an obvious link to improper functioning of the immune system, and insufficient immune responses can lead to uncontrolled acute and chronic infections. The immune system may also be important in tumor surveillance and control, cardiovascular disease, health complications related to obesity, neuromuscular diseases, depression, and dementia. Thus, a working knowledge of the role of immunity in disease processes is becoming increasingly important in almost all aspects of clinical practice. This review provides an overview of the immune response and discusses immune cell populations and major branches of immunity, compartmentalization and specialized immune niches, antigen recognition in innate and adaptive immunity, immune tolerance toward self antigens, inflammation and innate immune responses, adaptive immune responses and helper T (Th) cell subsets, components of the immune response that are important targets of treatment in autoimmune diseases, mechanisms of action of biologics used to treat autoimmune diseases and their approved uses, and mechanisms of other drugs commonly used in the treatment of autoimmune diseases. Figures show the development of erythrocytes, platelets, lymphocytes, and other immune system cells originating from hematopoietic stem cells that first reside in the fetal liver and later migrate to the bone marrow, antigen–major histocompatibility complex recognition by T cell receptor control of T cell survival and activation, and Th cells as central determinants of the adaptive immune response toward different stimuli. Tables list cell populations involved in innate and adaptive immunity, pattern recognition receptors with known ligands, autoantibody-mediated human diseases: examples of pathogenic mechanisms, selected Food and Drug Administration–approved autoimmune disease indications for biologics, and mechanism of action of biologics used to treat autoimmune diseases.   This review contains 3 highly rendered figures, 5 tables, and 64 references.


2019 ◽  
Vol 10 (2) ◽  
pp. 1132-1145 ◽  
Author(s):  
Meiling Liu ◽  
Xiuxia Zhang ◽  
Yunpeng Hao ◽  
Jinhua Ding ◽  
Jing Shen ◽  
...  

Multiple articles have confirmed that an imbalance of the intestinal microbiota is closely related to aberrant immune responses of the intestines and to the pathogenesis of inflammatory bowel diseases (IBDs).


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Maritza Vaca ◽  
Ana-Lucia Moncayo ◽  
Catherine A. Cosgrove ◽  
Martha E. Chico ◽  
Luiz R. Castello-Branco ◽  
...  

Immune responses to oral vaccines are impaired in populations living in conditions of poverty in developing countries, and there is evidence that concurrent geohelminth infections may contribute to this effect. We vaccinated 48 children living in rural communities in Ecuador with a single oral dose of 100 mg of BCG Moreau RDJ and measured the frequencies of tuberculin-stimulated peripheral blood mononuclear cells expressing IFN-γbefore and after vaccination. Vaccinated children had active ascariasis(n=20)or had been infected but received short-(n=13)or long-term(n=15)repeated treatments with albendazole prior to vaccination to treat ascariasis. All children had a BCG scar from neonatal vaccination. There was no evidence of a boosting of postvaccination IFN-γresponses in any of the 3 study groups. Our data provide support for the presence of a barrier to oral vaccination among children from the rural tropics that appeared to be independent of concurrent ascariasis.


1999 ◽  
Vol 67 (2) ◽  
pp. 520-526 ◽  
Author(s):  
Wim Van den Broeck ◽  
Eric Cox ◽  
Bruno M. Goddeeris

ABSTRACT F4 receptor-positive (F4R+) and F4 receptor-negative (F4R−) pigs were orally vaccinated with purified F4 fimbriae of enterotoxigenic Escherichia coli (ETEC). Serum immunoglobulin G (IgG) and IgA responses were readily detected in F4R+ animals, whereas immune responses were not detected in F4R− animals. Even after a subsequent oral infection with virulent F4+ ETEC and a booster immunization with F4, the F4R− animals remained F4 seronegative whereas the unvaccinated F4R+ pigs exhibited clear IgA and IgG responses. These results clearly demonstrate that F4Rs are a prerequisite for an immune response following oral immunization. Furthermore, indications that oral F4 vaccination can induce mucosal protection were obtained, since the experimental ETEC infection did not induce a systemic booster response or fecal ETEC excretion in orally vaccinated F4R+ pigs, in contrast to the clear immune response and ETEC excretion of unvaccinated F4R+ animals. F4-specific IgA antibodies could be found in the feces of the vaccinated F4R+ pigs. They are secreted at the intestinal mucosal surface and appear to prevent ETEC infection. The F4R-dependent induction of a mucosal immune response can be used as a model to better understand mucosal immunization and mucosal immune responses and can contribute to the development of oral vaccines in veterinary as well as in human medicine.


mSphere ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Ana A. Weil ◽  
Rachel L. Becker ◽  
Jason B. Harris

ABSTRACT Vibrio cholerae is a noninvasive pathogen that colonizes the small intestine and produces cholera toxin, causing severe secretory diarrhea. Cholera results in long lasting immunity, and recent studies have improved our understanding of the antigenic repertoire of V. cholerae. Interactions between the host, V. cholerae, and the intestinal microbiome are now recognized as factors which impact susceptibility to cholera and the ability to mount a successful immune response to vaccination. Here, we review recent data and corresponding models to describe immune responses to V. cholerae infection and explain how the host microbiome may impact the pathogenesis of V. cholerae. In the ongoing battle against cholera, the intestinal microbiome represents a frontier for new approaches to intervention and prevention.


Physiology ◽  
2020 ◽  
Vol 35 (4) ◽  
pp. 244-260 ◽  
Author(s):  
Eileen Uribe-Querol ◽  
Carlos Rosales

Entamoeba histolytica is a protozoan parasite responsible for amoebiasis, a disease with a high prevalence in developing countries. Establishing an amoebic infection involves interplay between pathogenic factors for invasion and tissue damage, and immune responses for protecting the host. Here, we review the pathogenicity of E. histolytica and summarize the latest knowledge on immune response and immune evasion mechanisms during amoebiasis.


2021 ◽  
Vol 9 (4) ◽  
pp. 808
Author(s):  
Marta Domínguez-Maqueda ◽  
Isabel M. Cerezo ◽  
Silvana Teresa Tapia-Paniagua ◽  
Inés García De La Banda ◽  
Xabier Moreno-Ventas ◽  
...  

Concerns about safety, applicability and functionality associated with live probiotic cells have led to consideration of the use of non-viable microorganisms, known as paraprobiotics. The present study evaluated the effects of dietary administration of heat-inactivated cells of the probiotic strain Shewanella putrefaciens Ppd11 on the intestinal microbiota and immune gene transcription in Solea senegalensis. Results obtained were evaluated and compared to those described after feeding with viable Pdp11 cells. S. senegalensis specimens were fed with basal (control) diet or supplemented with live or heat inactivated (60 °C, 1 h) probiotics diets for 45 days. Growth improvement was observed in the group receiving live probiotics compared to the control group, but not after feeding with a probiotic heat-inactivated diet. Regarding immune gene transcription, no changes were observed for tnfα, il-6, lys-c1, c7, hsp70, and hsp90aa in the intestinal samples based on the diet. On the contrary, hsp90ab, gp96, cd4, cd8, il-1β, and c3 transcription were modulated after probiotic supplementation, though no differences between viable and heat-inactivated probiotic supplemented diets were observed. Modulation of intestinal microbiota showed remarkable differences based on the viability of the probiotics. Thus, higher diversity in fish fed with live probiotic cells, jointly with increased Mycoplasmataceae and Spirochaetaceae to the detriment of Brevinemataceae, was detected. However, microbiota of fish receiving heat-inactivated probiotic cells showed decreased Mycoplasmataceae and increased Brevinemataceae and Vibrio genus abundance. In short, the results obtained indicate that the viable state of Pdp11 probiotic cells affects growth performance and modulation of S. senegalensis intestinal microbiota. On the contrary, minor changes were detected in the intestinal immune response, being similar for fish receiving both, viable and inactivated probiotic cell supplemented diets, when compared to the control diet.


Vaccine ◽  
2013 ◽  
Vol 31 (3) ◽  
pp. 452-460 ◽  
Author(s):  
Firdausi Qadri ◽  
Taufiqur Rahman Bhuiyan ◽  
David A. Sack ◽  
Ann-Mari Svennerholm

mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Danielle Hickman ◽  
Melissa K. Jones ◽  
Shu Zhu ◽  
Ericka Kirkpatrick ◽  
David A. Ostrov ◽  
...  

ABSTRACT Human noroviruses are the primary cause of severe childhood diarrhea in the United States, and they are of particular clinical importance in pediatric populations in the developing world. A major contributing factor to the general increased severity of infectious diseases in these regions is malnutrition—nutritional status shapes host immune responses and the composition of the host intestinal microbiota, both of which can influence the outcome of pathogenic infections. In terms of enteric norovirus infections, mucosal immunity and intestinal microbes are likely to contribute to the infection outcome in substantial ways. We probed these interactions using a murine model of malnutrition and murine norovirus infection. Our results reveal that malnutrition is associated with more severe norovirus infections as defined by weight loss, impaired control of norovirus infections, reduced antiviral antibody responses, loss of protective immunity, and enhanced viral evolution. Moreover, the microbiota is dramatically altered by malnutrition. Interestingly, murine norovirus infection also causes changes in the host microbial composition within the intestine but only in healthy mice. In fact, the infection-associated microbiota resembles the malnutrition-associated microbiota. Collectively, these findings represent an extensive characterization of a new malnutrition model of norovirus infection that will ultimately facilitate elucidation of the nutritionally regulated host parameters that predispose to more severe infections and impaired memory immune responses. In a broad sense, this model may provide insight into the reduced efficacy of oral vaccines in malnourished hosts and the potential for malnourished individuals to act as reservoirs of emergent virus strains. IMPORTANCE Malnourished children in developing countries are susceptible to more severe infections than their healthy counterparts, in particular enteric infections that cause diarrhea. In order to probe the effects of malnutrition on an enteric infection in a well-controlled system devoid of other environmental and genetic variability, we studied norovirus infection in a mouse model. We have revealed that malnourished mice develop more severe norovirus infections and they fail to mount effective memory immunity to a secondary challenge. This is of particular importance because malnourished children generally mount less effective immune responses to oral vaccines, and we can now use our new model system to probe the immunological basis of this impairment. We have also determined that noroviruses evolve more readily in the face of malnutrition. Finally, both norovirus infection and malnutrition independently alter the composition of the intestinal microbiota in substantial and overlapping ways.


Sign in / Sign up

Export Citation Format

Share Document