Immune Response to the Enteric Parasite Entamoeba histolytica

Physiology ◽  
2020 ◽  
Vol 35 (4) ◽  
pp. 244-260 ◽  
Author(s):  
Eileen Uribe-Querol ◽  
Carlos Rosales

Entamoeba histolytica is a protozoan parasite responsible for amoebiasis, a disease with a high prevalence in developing countries. Establishing an amoebic infection involves interplay between pathogenic factors for invasion and tissue damage, and immune responses for protecting the host. Here, we review the pathogenicity of E. histolytica and summarize the latest knowledge on immune response and immune evasion mechanisms during amoebiasis.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hua Cong ◽  
Min Zhang ◽  
Qingli Zhang ◽  
Jing Gong ◽  
Haizi Cong ◽  
...  

Toxoplasma gondiiis a protozoan parasite capable of infecting humans and animals. Surface antigen glycoproteins, SAG2C, -2D, -2X, and -2Y, are expressed on the surface of bradyzoites. These antigens have been shown to protect bradyzoites against immune responses during chronic infections. We studied structures of SAG2C, -2D, -2X, and -2Y proteins using bioinformatics methods. The protein sequence alignment was performed by T-Coffee method. Secondary structural and functional domains were predicted using software PSIPRED v3.0 and SMART software, and 3D models of proteins were constructed and compared using the I-TASSER server, VMD, and SWISS-spdbv. Our results showed that SAG2C, -2D, -2X, and -2Y are highly homologous proteins. They share the same conserved peptides and HLA-I restricted epitopes. The similarity in structure and domains indicated putative common functions that might stimulate similar immune response in hosts. The conserved peptides and HLA-restricted epitopes could provide important insights on vaccine study and the diagnosis of this disease.


2015 ◽  
Vol 370 (1671) ◽  
pp. 20140144 ◽  
Author(s):  
Ira Praharaj ◽  
Sushil M. John ◽  
Rini Bandyopadhyay ◽  
Gagandeep Kang

Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome.


2021 ◽  
Vol 9 (6) ◽  
pp. 1317
Author(s):  
Matteo Bulati ◽  
Rosalia Busà ◽  
Claudia Carcione ◽  
Gioacchin Iannolo ◽  
Giuseppina Di Mento ◽  
...  

Currently, Klebsiella pneumoniae is a pathogen of clinical relevance due to its plastic ability of acquiring resistance genes to multiple antibiotics. During K. pneumoniae infections, lipopolysaccharides (LPS) play an ambiguous role as they both activate immune responses but can also play a role in immune evasion. The LPS O2a and LPS O2afg serotypes are prevalent in most multidrug resistant K. pneumoniae strains. Thus, we sought to understand if those two particular LPS serotypes were involved in a mechanism of immune evasion. We have extracted LPS (serotypes O1, O2a and O2afg) from K. pneumoniae strains and, using human monocytes ex vivo, we assessed the ability of those LPS antigens to induce the production of pro-inflammatory cytokines and chemokines. We observed that, when human monocytes are incubated with LPS serotypes O1, O2a or O2afg strains, O2afg and, to a lesser extent, O2a but not O1 failed to elicit the production of pro-inflammatory cytokines and chemokines, which suggests a role in immune evasion. Our preliminary data also shows that nuclear translocation of NF-κB, a process which regulates an immune response against infections, occurs in monocytes incubated with LPS O1 and, to a smaller extent, with LPS O2a, but not with the LPS serotype O2afg. Our results indicate that multidrug resistant K. pneumoniae expressing LPS O2afg serotypes avoid an initial inflammatory immune response and, consequently, are able to systematically spread inside the host unharmed, which results in the several pathologies associated with this bacterium.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Yo-Ping Lai ◽  
Chung-Jiuan Jeng ◽  
Shu-Ching Chen

Activation of CD8+ cytotoxic T cells has long been regarded as a major antitumor mechanism of the immune system. Emerging evidence suggests that CD4+ T cells are required for the generation and maintenance of effective CD8+ cytotoxic and memory T cells, a phenomenon known as CD4+ T-cell help. CD4+ T-cell help facilitates the optimal expansion, trafficking, and effector function of CD8+ T cells, thereby enhancing tumor destruction. In addition, a specialized subset of CD4+ T cells, CD4+CD25+ regulatory T cells (TRegs), effectively hampers anti-tumor immune responses, which has been proposed to be one of the major tumor immune evasion mechanisms. Here, we review recent advances in deciphering how anti-tumor immune responses are orchestrated by CD4+ T cells. We will also discuss the immunotherapeutic potential of CD4+ T-cell manipulation in anti-tumor immune response.


2020 ◽  
Author(s):  
Jianqing Wu ◽  
Ping Zha

We conducted many model simulations to understand the causes of the damages of coronavirus (COVID-19) to lung tissue and constructed a diagram showing apparent viral reproduction, immune response and damage accumulation curves. We found that lung damages include virus-caused damage, tissue damage caused by immune responses and tissue damage caused by accumulated wastes. The virus-caused damage is proportional to the phase lag between the viral reproduction curve and the delayed adaptive immune response curve, while waste-induced damage is attributed to imbalance in removing viral, cellular and metabolic by-products. We found that treatment strategies should slow down viral reproduction and speed up immune response, and improve blood micro-circulation in the lungs. Consistent with the strategies, measures are taken to void direct lung infection, strengthen innate responses, promote immune responses, dilute viral concentration in lung tissue, maintain waste removal balance, protect heart and kidneys, control other infections, avoid allergic reactions and other inflammation, etc. We show that medical, dietary, emotional, lifestyle, environmental, mechanical factors, etc. may be simultaneously used to mitigate lung damages and prove that multiple factor health optimization method is magnitudes more powerful than a single factor treatment. Such a method does not depend on molecular specificity and can be used in parallel to antiviral drugs.


Author(s):  
Victor Tsutsumi ◽  
Adolfo Martinez-Palomo ◽  
Kyuichi Tanikawa

The protozoan parasite Entamoeba histolytica is the causative agent of amebiasis in man. The trophozoite or motile form is a highly dynamic and pleomorphic cell with a great capacity to destroy tissues. Moreover, the parasite has the singular ability to phagocytize a variety of different live or death cells. Phagocytosis of red blood cells by E. histolytica trophozoites is a complex phenomenon related with amebic pathogenicity and nutrition.


2015 ◽  
Vol 29 (3) ◽  
pp. 119-129 ◽  
Author(s):  
Richard J. Stevenson ◽  
Deborah Hodgson ◽  
Megan J. Oaten ◽  
Luba Sominsky ◽  
Mehmet Mahmut ◽  
...  

Abstract. Both disgust and disease-related images appear able to induce an innate immune response but it is unclear whether these effects are independent or rely upon a common shared factor (e.g., disgust or disease-related cognitions). In this study we directly compared these two inductions using specifically generated sets of images. One set was disease-related but evoked little disgust, while the other set was disgust evoking but with less disease-relatedness. These two image sets were then compared to a third set, a negative control condition. Using a wholly within-subject design, participants viewed one image set per week, and provided saliva samples, before and after each viewing occasion, which were later analyzed for innate immune markers. We found that both the disease related and disgust images, relative to the negative control images, were not able to generate an innate immune response. However, secondary analyses revealed innate immune responses in participants with greater propensity to feel disgust following exposure to disease-related and disgusting images. These findings suggest that disgust images relatively free of disease-related themes, and disease-related images relatively free of disgust may be suboptimal cues for generating an innate immune response. Not only may this explain why disgust propensity mediates these effects, it may also imply a common pathway.


Sign in / Sign up

Export Citation Format

Share Document