scholarly journals The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire

2016 ◽  
Vol 371 (1696) ◽  
pp. 20150163 ◽  
Author(s):  
Claire M. Belcher

Studies of palaeofire rely on quantifying the abundance of fossil charcoals in sediments to estimate changes in fire activity. However, gaining an understanding of the behaviour of palaeofires is also essential if we are to determine the palaeoecological impact of wildfires. Here, I use experimental approaches to explore relationships between litter fire behaviour and leaf traits that are observable in the fossil record. Fire calorimetry was used to assess the flammability of 15 species of conifer litter and indicated that leaf morphology related to litter bulk density and fuel load that determined the duration of burning and the total energy released. These data were applied to a fossil case study that couples estimates of palaeolitter fire behaviour to charcoal-based estimates of fire activity and observations of palaeoecological changes. The case study reveals that significant changes in fire activity and behaviour likely fed back to determine ecosystem composition. This work highlights that we can recognize and measure plant traits in the fossil record that relate to fire behaviour and therefore that further research is warranted towards estimating palaeofire behaviour as it can enhance our ability to interpret the palaeoecological impact of palaeofires throughout Earth's long evolutionary history. This article is part of the themed issue ‘The interaction of fire and mankind’.

2013 ◽  
Vol 22 (4) ◽  
pp. 440 ◽  
Author(s):  
Jesse K. Kreye ◽  
Leda N. Kobziar ◽  
Wayne C. Zipperer

Mechanical fuels treatments are being used in fire-prone ecosystems where fuel loading poses a hazard, yet little research elucidating subsequent fire behaviour exists, especially in litter-dominated fuelbeds. To address this deficiency, we burned constructed fuelbeds from masticated sites in pine flatwoods forests in northern Florida with palmetto-dominated understoreys and examined the effects of fuel load and fuel moisture content (FMC) on fire behaviour. Flame lengths (49–140 cm) and fireline intensity (183–773 kJ m–1 s–1) increased with loading (10–30 Mg ha–1) and were reduced by 40 and 47% with increasing FMC from 9 to 13%. Rate of spread was not influenced by fuel load, but doubled under drier FMC. Fuel consumption was >90% for all burns. Soil temperatures were influenced by both fuel load and FMC, but never reached lethal temperatures (60°C). However, temperatures of thermocouple probes placed at the fuelbed surface reached 274–503°C. Probe maximum temperature and duration at temperatures ≥60°C (9.5–20.0°C min) both increased with fuel load, but were unaffected by FMC. The fire behaviour observed in these unique litter-dominated fuelbeds provides additional insight into the burning characteristics of masticated fuels in general.


2020 ◽  
Author(s):  
Mara Baudena ◽  
Rubén Diaz-Sierra ◽  
Antonello Provenzale ◽  
Luke Sweeney ◽  
Marta Magnani

<p>Fire is an important disturbance process, having significant socio-economic consequences on the one hand, while fulfilling a vital ecological role on the other. Across fire-prone ecosystems, different fire regimes can be found, reflecting a combination of climatic factors and of different plant species characteristics. Ecosystem flammability and fuel load are the most evident and well-studied aspects of fire regime, with only recently attention being devoted to plant traits associated with fire adaptation and post-fire response. The aim of this research is to understand the role that plant traits have in driving fire regimes in different fire-prone ecosystems across the world. A mathematical, mechanistic model was developed representing vegetation dynamics, including stochastic fires and different plant fire-responses. We observe that differences in combinations of plant traits are an important factor in determining alternative ecological states. This is driven by differences in how plants determine fire occurrence and in relation to competition between plant species. Differing plant communities under the same climatic conditions can occur when the most competitive plant types do not have a strong resistance to fires, leading to different ecological and fire regime states for example in some tropical savannas and forests, or in Boreal forests. Conversely, when the dominant plant type has a very strong, post-fire response (at individual level), as e.g. in Mediterranean forests, only one ecological state is possible. This research can help improving understanding of changes in fire regime in the future to assist in fire management efforts, and underlines the importance of including plant fire-responses when modelling fire ecosystems under climate-change scenarios.</p>


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Musa Musa

This research was conducted to determine the Effectiveness of Jakarta Siaga 112 Emergency Services in Fire Management by UPT. Disaster Data & Information Center of BPBD DKI Jakarta Province by paying attention to aspects contained in the Effectiveness of the Jakarta Siaga Emergency Service Program 112. The research method was carried out with a case study method with data collection techniques using interview methods and document review. Interviews were conducted on 10 (ten) key informants, document review focused on documents related to the Jakarta Emergency Alert Service 112 Effectiveness research in Fire Management. The results showed that the Effectiveness of Jakarta Siaga 112 Emergency Services in Fire Management by UPT. The Center for Disaster Data & Information BPBD DKI Jakarta Province Its effectiveness is still low, due to the Implementation of Emergency Services Jakarta Standby 112 in Fire Management implemented by UPT. Disaster Data & Information Center of BPBD DKI Jakarta Province in terms of the Target Group Understanding of the Program, the Achievement of the Program Objectives aspects, and the Program Follow-up aspects. It is recommended to continue to disseminate this Emergency Service to the public, it is necessary to increase the firm commitment of the Head of 8 SKPD related to fire management so that all units play a role in accordance with the Standard Operating Procedures (SOPs) for Fire Management and the evaluation and follow-up of program services that are held periodically 3 once a month.Keywords: Effectiveness, Emergency Services, Fire Handling


Author(s):  
Kamal N. M. A. N. M. ◽  
◽  
Nasir N. F. ◽  
Abdul Patar M. A. ◽  
Seis M. F. ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Libonati ◽  
J. M. C. Pereira ◽  
C. C. Da Camara ◽  
L. F. Peres ◽  
D. Oom ◽  
...  

AbstractBiomass burning in the Brazilian Amazon is modulated by climate factors, such as droughts, and by human factors, such as deforestation, and land management activities. The increase in forest fires during drought years has led to the hypothesis that fire activity decoupled from deforestation during the twenty-first century. However, assessment of the hypothesis relied on an incorrect active fire dataset, which led to an underestimation of the decreasing trend in fire activity and to an inflated rank for year 2015 in terms of active fire counts. The recent correction of that database warrants a reassessment of the relationships between deforestation and fire. Contrasting with earlier findings, we show that the exacerbating effect of drought on fire season severity did not increase from 2003 to 2015 and that the record-breaking dry conditions of 2015 had the least impact on fire season of all twenty-first century severe droughts. Overall, our results for the same period used in the study that originated the fire-deforestation decoupling hypothesis (2003–2015) show that decoupling was clearly weaker than initially proposed. Extension of the study period up to 2019, and novel analysis of trends in fire types and fire intensity strengthened this conclusion. Therefore, the role of deforestation as a driver of fire activity in the region should not be underestimated and must be taken into account when implementing measures to protect the Amazon forest.


2012 ◽  
Vol 249-250 ◽  
pp. 1057-1062
Author(s):  
M. Zeinoddini ◽  
S.A. Hosseini ◽  
M. Daghigh ◽  
S. Arnavaz

Previous researchers have tried to predict the response of different types of structures under elevated temperatures. The results are important in preventing the collapse of buildings in fire. Post-fire status of the structures is also of interest for ensuring the safety of rescue workers during the fire and in the post-fire situations. Determining the extent of the structural damage left behind a fire event is necessary to draw up adequate repair plans. Connections play an important role on the fire performance of different structures. Due to the high cost of fire tests, adequate experimental data about a broad range of connections is not available. A vulnerable type of such connections to fire is the weld connections between I-shape beams and cylindrical columns in oil platform topsides. Considering the high probability of fire in oil platforms, study of the behaviour of these connections at elevated temperatures and in the post-fire, is of great importance. In the current study, eight small scale experimental fire tests on welded connections between I-shape beams and cylindrical columns have been conducted. Four tests are aimed at investigating the structural performance of this connection at elevated temperature. In other tests, post-fire behaviour of these connections has been studied to investigate their residual structural strength.


2016 ◽  
Vol 9 (11) ◽  
pp. 4227-4255 ◽  
Author(s):  
Bradley O. Christoffersen ◽  
Manuel Gloor ◽  
Sophie Fauset ◽  
Nikolaos M. Fyllas ◽  
David R. Galbraith ◽  
...  

Abstract. Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ε, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leaf : sapwood area ratio Al : As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (Amax), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. Remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.


2007 ◽  
Vol 16 (5) ◽  
pp. 531 ◽  
Author(s):  
Patrice Savadogo ◽  
Didier Zida ◽  
Louis Sawadogo ◽  
Daniel Tiveau ◽  
Mulualem Tigabu ◽  
...  

Fuel characteristics, fire behaviour and temperature were studied in relation to grazing, dominant grass type and wind direction in West African savanna–woodland by lighting 32 prescribed early fires. Grazing significantly reduced the vegetation height, total fuel load, and dead and live fuel fractions whereas plots dominated by perennial grasses had higher values for vegetation height, total fuel load and the quantity of live fuel load. Although fire intensity remained insensitive (P > 0.05) to any of these factors, fuel consumption was significantly (P = 0.021) reduced by grazing, rate of spread was faster in head fire (P = 0.012), and flame length was shorter in head fire than back fire (P = 0.044). The average maximum temperature was higher (P < 0.05) on non-grazed plots, on plots dominated by annual grasses, on plots subjected to head fire, and at the soil surface. Lethal temperature residence time showed a nearly similar trend to fire temperature. Wind speed and total fuel load were best predictors of fire behaviour parameters (R2 ranging from 0.557 to 0.862). It can be concluded that grazing could be used as a management tool to modify fire behaviour, back fire should be carried out during prescribed burning to lower fire severity, and the fire behaviour models can be employed to guide prescribed early fire in the study area.


Sign in / Sign up

Export Citation Format

Share Document