scholarly journals Dietary fat concentrations influence fatty acid assimilation patterns in Atlantic pollock ( Pollachius virens )

2020 ◽  
Vol 375 (1804) ◽  
pp. 20190649 ◽  
Author(s):  
Suzanne M. Budge ◽  
Kathryn Townsend ◽  
Santosh P. Lall ◽  
Jeffrey F. Bromaghin

A key aspect in the use of fatty acids (FA) to estimate predator diets using quantitative FA signature analysis (QFASA) is the ability to account for FA assimilation through the use of calibration coefficients (CC). Here, we tested the assumption that CC are independent of dietary fat concentrations by feeding Atlantic pollock ( Pollachius virens ) three formulated diets with very similar FA proportions but different fat concentrations (5–9% of diet) for 20 weeks. CC calculated using FA profiles of diet and triacylglycerols in pollock liver were significantly different for the three diets. To test the robustness of diet estimates to these differences, we used the CC set derived from feeding the diet with the lowest fat concentration, published prey FA profiles and realistic diet estimates of pollock to construct ‘pseudo-predators'. Application of QFASA to each pseudo-predator using the three sets of CC and the same prey FA profiles resulted in diet estimate biases of twofold for major prey items and approximately fivefold for minor prey items. This work illustrates the importance of incorporating diets with fat concentrations that are similar to natural prey when conducting feeding experiments to calculate CC. This article is part of the theme ‘The next horizons for lipids as ‘trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.

2009 ◽  
Vol 81 (3) ◽  
pp. 453-466 ◽  
Author(s):  
Cláudia M. Oller do Nascimento ◽  
Eliane B. Ribeiro ◽  
Lila M. Oyama

Approximately 40% of the total energy consumed by western populations is represented by lipids, most of them being ingested as triacylglycerols and phospholipids. The focus of this review is to analyze the effect of the type of dietary fat on white adipose tissue metabolism and secretory function, particularly on haptoglobin, TNF-α, plasminogen activator inhibitor-1 and adiponectin secretion. Previous studies have demonstrated that the duration of the exposure to the high-fat feeding, amount of fatty acid present in the diet and the type of fatty acid may or may not have a significant effect on adipose tissue metabolism. However, the long-term or short-term high fat diets, especially rich in saturated fatty acids, probably by activation of toll-like receptors, stimulated the expression of proinflammatory adipokines and inhibited adiponectin expression. Further studies are needed to investigate the cellular mechanisms by which dietary fatty acids affect white adipose tissue metabolism and secretory functions.


2019 ◽  
Vol 79 (1) ◽  
pp. 30-41 ◽  
Author(s):  
Leanne Hodson ◽  
Fredrik Rosqvist ◽  
Siôn A Parry

Non-alcoholic fatty liver disease encompasses a spectrum of conditions from hepatic steatosis through to cirrhosis; obesity is a known risk factor. The liver plays a major role in regulating fatty acid metabolism and perturbations in intrahepatic processes have potential to impact on metabolic health. It remains unclear why intra-hepatocellular fat starts to accumulate, but it likely involves an imbalance between fatty acid delivery to the liver, fatty acid synthesis and oxidation within the liver and TAG export from the liver. As man spends the majority of the day in a postprandial rather than postabsorptive state, dietary fatty acid intake should be taken into consideration when investigating why intra-hepatic fat starts to accumulate. This review will discuss the impact of the quantity and quality of dietary fatty acids on liver fat accumulation and metabolism, along with some of the potential mechanisms involved. Studies investigating the role of dietary fat in liver fat accumulation, although surprisingly limited, have clearly demonstrated that it is total energy intake, rather than fat intake per se, that is a key mediator of liver fat content; hyperenergetic diets increase liver fat whilst hypoenergetic diets decrease liver fat content irrespective of total fat content. Moreover, there is now, albeit limited evidence emerging to suggest the composition of dietary fat may also play a role in liver fat accumulation, with diets enriched in saturated fat appearing to increase liver fat content to a greater extent when compared with diets enriched in unsaturated fats.


2020 ◽  
Vol 375 (1804) ◽  
pp. 20190650 ◽  
Author(s):  
Jakob Kühn ◽  
Kevin Tobias ◽  
Alexander Jähngen ◽  
Liliane Ruess

Quantitative fatty acid signature analysis (QFASA) is widely used to investigate trophic interactions in marine ecosystems, as nutritionally important ω 3 long-chain polyunsaturated fatty acids at the food web base allow tracing of their trophic transfer in the food chain. By contrast, the basal resources in soil food webs comprise a wider array of trophic markers, including branched-chain, cyclopropane as well as several mono- and polyunsaturated fatty acids. These diverse markers allow distinguishing between the three dominant soil carbon and energy channels, the root, bacterial and fungal pathway. QFASA has not been applied yet to soil ecosystems owing to the lack of a priori data to fit the model. The present work investigates the transfer of absolute and relative trophic marker fatty acids into Collembola as dominant representatives of the soil mesofauna. Three different species were fed on a variety of single diets characteristic for the green and brown food chain. Calibration coefficients were calculated and diet estimation trials for mixed diet set-ups were performed, using a library comprising 50 different resources. However, estimation of Collembola diet was only partially successful, identifying the main components, but not the correct relative proportions. Adjustments by fat content or diet group exclusion did not improve the results. Nonetheless, this work provides, to our knowledge, a first comprehensive dataset to translate the application of QFASA from marine to soil ecosystems. This article is part of the theme issue ‘The next horizons for lipids as ‘trophic biomarkers’: evidence and significance of consumer modification of dietary fatty acids’.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1038-1038
Author(s):  
Michael Miklus ◽  
Pedro Prieto ◽  
Cynthia Barber ◽  
Robert Rhoads ◽  
Samer El-Kadi

Abstract Objectives The objectives of this study were to determine the effect of 2’fucosyllactose (2’FL) and fat blends on growth, body composition and fatty acid profile of the liver and brain using the neonatal pig as a model for the human infant. Methods Pigs (3 d old) were randomly assigned to either: 1. control, 2. Palm Olein (PO) fat blend – Low 2'-FL, 3. PO – High 2'-FL, 4. High oleic acid (HO) – Low 2'-FL, 5. HO FB – High 2'-FL, 6. PO FB – GLA, or 7. kept with their sows. Pigs in groups 1 to 6 received 250 ml·kg−1·d−1 of formula in 5 equal meals for 15 d. On day 14 of the study, groups 1–6 received intraperitoneal E. coli LPS challenge at 100 µg·kg−1 weight. Results Body weight was greater for piglets fed by sows than those in the other groups (P < 0.001). In addition, % fat and bone mineral content were higher in the sow-fed group while lean % was less sow-fed piglets (group 7) compared with those in the other groups (P < 0.05). Only longissimus weight expressed as a % of body weight, was greater for group 7 compared with all other groups (P < 0.001). Soleus, semitendinosus, brain, heart and spleen weights as a % of body weight were similar across all groups. However, liver weight as a % of body weight was greater in groups 1–6 (3.7%) compared with group 7 (2.8%; P < 0.001). The proportion of brain 16:1 fatty acid was less (0.83%) for groups 1–6 than for group 7 pigs (1.08%; P < 0.0001). The proportion of 20:3 N6 was greatest (0.66%) for group 3 compared with groups 1 and 4 (0.55%; P < 0.05). In addition, the proportion of 20:5 N3 was greatest (0.12%) for group 3 compared with groups 1 and 7 (0.07%; P < 0.05). The proportion of liver 16:1, 18:0, and 18:1 cis-11 fatty acids were greater for group 7 (2.3, 23, 2.2%) than groups 1–6 (0.2, 20, 1.2%; P < 0.0001). Conversely, the contribution of 14:0, 18:1 cis-9, 18:3 N6 cis-6,9,12, and 22:6 N3 were greater for pigs in groups 1–6 (1.3, 0.6, and 14, 7.8%) compared with those in group 7 (0.5, 8.5, 0.2 and 3.5%; P < 0.0001). Conclusions Our data suggest that feeding 2’fucosyllactose had no effect on the body weight gain and composition in neonatal pigs. Our data also suggest that dietary fatty acids have a greater effect on liver than on brain fatty acid composition. Funding Sources Funding for the work was provided by Perrigo Nutritionals, LLC.


2005 ◽  
Vol 288 (3) ◽  
pp. E547-E555 ◽  
Author(s):  
Ana Paola Uranga ◽  
James Levine ◽  
Michael Jensen

Oxidation and adipose tissue uptake of dietary fat can be measured by adding fatty acid tracers to meals. These studies were conducted to measure between-study variability of these types of experiments and assess whether dietary fatty acids are handled differently in the follicular vs. luteal phase of the menstrual cycle. Healthy normal-weight men ( n = 12) and women ( n = 12) participated in these studies, which were block randomized to control for study order, isotope ([3H]triolein vs. [14C]triolein), and menstrual cycle. Energy expenditure (indirect calorimetry), meal fatty acid oxidation, and meal fatty acid uptake into upper body and lower body subcutaneous fat (biopsies) 24 h after the experimental meal were measured. A greater portion of meal fatty acids was stored in upper body subcutaneous adipose tissue (24 ± 2 vs. 16 ± 2%, P < 0.005) and lower body fat (12 ± 1 vs. 7 ± 1%, P < 0.005) in women than in men. Meal fatty acid oxidation (3H2O generation) was greater in men than in women (52 ± 3 vs. 45 ± 2%, P = 0.04). Leg adipose tissue uptake of meal fatty acids was 15 ± 2% in the follicular phase of the menstrual cycle and 10 ± 1% in the luteal phase ( P = NS). Variance in meal fatty acid uptake was somewhat ( P = NS) greater in women than in men, although menstrual cycle factors did not contribute significantly. We conclude that leg uptake of dietary fat is slightly more variable in women than in men, but that there are no major effects of menstrual cycle on meal fatty acid disposal.


2014 ◽  
Vol 116 (5) ◽  
pp. 584-595 ◽  
Author(s):  
Deiene Rodríguez-Barreto ◽  
Salvador Jerez ◽  
Juana R. Cejas ◽  
M. Virginia Martin ◽  
Nieves G. Acosta ◽  
...  

1996 ◽  
Vol 1996 ◽  
pp. 155-155
Author(s):  
M S Redshaw ◽  
J Wiseman ◽  
D J A Cole ◽  
J D Wood ◽  
M Enser ◽  
...  

It is well established that the fatty acid combustion of adipose issue in pigs (non-ruminants) may be manipulated by changes in the fatty acid profile of the diets. The objective of this program of work was to quantify the responses of adipose depots of finishing pigs to changes in the level and profile of dietary fatty acids and to relate these changes to the sensory quality of meat as determined by taste panel.


Sign in / Sign up

Export Citation Format

Share Document