scholarly journals Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean

2020 ◽  
Vol 375 (1798) ◽  
pp. 20190706 ◽  
Author(s):  
Dedmer B. Van de Waal ◽  
Elena Litchman

Predicting the effects of multiple global change stressors on microbial communities remains a challenge because of the complex interactions among those factors. Here, we explore the combined effects of major global change stressors on nutrient acquisition traits in marine phytoplankton. Nutrient limitation constrains phytoplankton production in large parts of the present-day oceans, and is expected to increase owing to climate change, potentially favouring small phytoplankton that are better adapted to oligotrophic conditions. However, other stressors, such as elevated p CO 2 , rising temperatures and higher light levels, may reduce general metabolic and photosynthetic costs, allowing the reallocation of energy to the acquisition of increasingly limiting nutrients. We propose that this energy reallocation in response to major global change stressors may be more effective in large-celled phytoplankton species and, thus, could indirectly benefit large-more than small-celled phytoplankton, offsetting, at least partially, competitive disadvantages of large cells in a future ocean. Thus, considering the size-dependent responses to multiple stressors may provide a more nuanced understanding of how different microbial groups would fare in the future climate and what effects that would have on ecosystem functioning. This article is part of the theme issue ‘Conceptual challenges in microbial community ecology’.

2013 ◽  
Vol 10 (2) ◽  
pp. 3241-3279
Author(s):  
J. A. Bonachela ◽  
S. D. Allison ◽  
A. C. Martiny ◽  
S. A. Levin

Abstract. The elemental ratios of marine phytoplankton emerge from complex interactions between the biotic and abiotic components of the ocean, and reflect the plastic response of individuals to changes in their environment. The stoichiometry of phytoplankton is, thus, dynamic and dependent on the physiological state of the cell. We present a theoretical model for the dynamics of the carbon, nitrogen and phosphorus contents of a phytoplankton population. By representing the regulatory processes controlling nutrient uptake, and focusing on the relation between nutrient content and protein synthesis, our model qualitatively replicates existing experimental observations for nutrient content and ratios. The population described by our model takes up nutrients in proportions that match the input ratios for a broad range of growth conditions. In addition, there are two zones of single-nutrient limitation separated by a wide zone of co-limitation. Within the co-limitation zone, a single point can be identified where nutrients are supplied in an optimal ratio. The existence of a wide co-limitation zone affects the standard picture for species competing for nitrogen and phosphorus, which shows here a much richer pattern. However, additional comprehensive laboratory experiments are needed to test our predictions. Our model contributes to the understanding of the global cycles of oceanic nitrogen and phosphorus, as well as the elemental ratios of these nutrients in phytoplankton populations.


2018 ◽  
Vol 285 (1879) ◽  
pp. 20180285 ◽  
Author(s):  
J. Côte ◽  
A. Boniface ◽  
S. Blanchet ◽  
A. P. Hendry ◽  
J. Gasparini ◽  
...  

The role of parasites in shaping melanin-based colour polymorphism, and the consequences of colour polymorphism for disease resistance, remain debated. Here we review recent evidence of the links between melanin-based coloration and the behavioural and immunological defences of vertebrates against their parasites. First we propose that (1) differences between colour morphs can result in variable exposure to parasites, either directly (certain colours might be more or less attractive to parasites) or indirectly (variations in behaviour and encounter probability). Once infected, we propose that (2) immune variation between differently coloured individuals might result in different abilities to cope with parasite infection. We then discuss (3) how these different abilities could translate into variable sexual and natural selection in environments varying in parasite pressure. Finally, we address (4) the potential role of parasites in the maintenance of melanin-based colour polymorphism, especially in the context of global change and multiple stressors in human-altered environments. Because global change will probably affect both coloration and the spread of parasitic diseases in the decades to come, future studies should take into account melanin-based coloration to better predict the evolutionary responses of animals to changing disease risk in human-altered environments.


2016 ◽  
Vol 283 (1829) ◽  
pp. 20160637 ◽  
Author(s):  
Erik A. Sperling ◽  
Christina A. Frieder ◽  
Lisa A. Levin

Sharp increases in atmospheric CO 2 are resulting in ocean warming, acidification and deoxygenation that threaten marine organisms on continental margins and their ecological functions and resulting ecosystem services. The relative influence of these stressors on biodiversity remains unclear, as well as the threshold levels for change and when secondary stressors become important. One strategy to interpret adaptation potential and predict future faunal change is to examine ecological shifts along natural gradients in the modern ocean. Here, we assess the explanatory power of temperature, oxygen and the carbonate system for macrofaunal diversity and evenness along continental upwelling margins using variance partitioning techniques. Oxygen levels have the strongest explanatory capacity for variation in species diversity. Sharp drops in diversity are seen as O 2 levels decline through the 0.5–0.15 ml l −1 (approx. 22–6 µM; approx. 21–5 matm) range, and as temperature increases through the 7–10°C range. p CO 2 is the best explanatory variable in the Arabian Sea, but explains little of the variance in diversity in the eastern Pacific Ocean. By contrast, very little variation in evenness is explained by these three global change variables. The identification of sharp thresholds in ecological response are used here to predict areas of the seafloor where diversity is most at risk to future marine global change, noting that the existence of clear regional differences cautions against applying global thresholds.


2020 ◽  
Vol 23 (3) ◽  
pp. 457-466 ◽  
Author(s):  
Elvire Bestion ◽  
Samuel Barton ◽  
Francisca C. García ◽  
Ruth Warfield ◽  
Gabriel Yvon‐Durocher

2013 ◽  
Vol 10 (2) ◽  
pp. 3627-3676 ◽  
Author(s):  
L. Bopp ◽  
L. Resplandy ◽  
J. C. Orr ◽  
S. C. Doney ◽  
J. P. Dunne ◽  
...  

Abstract. Ocean ecosystems are increasingly stressed by human-induced changes of their physical, chemical and biological environment. Among these changes, warming, acidification, deoxygenation and changes in primary productivity by marine phytoplankton can be considered as four of the major stressors of open ocean ecosystems. Due to rising atmospheric CO2 in the coming decades, these changes will be amplified. Here, we use the most recent simulations performed in the framework of the Coupled Model Intercomparison Project 5 to assess how these stressors may evolve over the course of the 21st century. The 10 Earth System Models used here project similar trends in ocean warming, acidification, deoxygenation and reduced primary productivity for each of the IPCC's representative concentration parthways (RCP) over the 21st century. For the "business-as-usual" scenario RCP8.5, the model-mean changes in 2090s (compared to 1990s) for sea surface temperature, sea surface pH, global O2 content and integrated primary productivity amount to +2.73 °C, −0.33 pH unit, −3.45% and −8.6%, respectively. For the high mitigation scenario RCP2.6, corresponding changes are +0.71 °C, −0.07 pH unit, −1.81% and −2.0% respectively, illustrating the effectiveness of extreme mitigation strategies. Although these stressors operate globally, they display distinct regional patterns. Large decreases in O2 and in pH are simulated in global ocean intermediate and mode waters, whereas large reductions in primary production are simulated in the tropics and in the North Atlantic. Although temperature and pH projections are robust across models, the same does not hold for projections of sub-surface O2 concentrations in the tropics and global and regional changes in net primary productivity.


1976 ◽  
Vol 25 (1) ◽  
pp. 29-42 ◽  
Author(s):  
C. Teixeira ◽  
A. A. H. Vieira

The growth of Phaeodactylum tricornutum, cultured at 7,000 lux and 25º C, in twelve-day experiments using enriched water collected at the surface and 50.0 m depth from coastal waters offshore of Ubatuba area, was carried out. Different water enrichements were made by the aseptic addition of several nutrients, at each depth, according to Smayda (1964). The nitrogen out measured in terms of Carbon-14 assimilation and cloropyll concentration, was found to be a primary limiting factor for marine phytoplankton production.


2020 ◽  
Author(s):  
Rong Bi ◽  
Stefanie M. H. Ismar-Rebitz ◽  
Ulrich Sommer ◽  
Hailong Zhang ◽  
Meixun Zhao

Abstract. Global change concurrently alters multiple environmental factors, with uncertain consequences for marine ecosystems. Lipids, in their function as trophic markers in food webs and organic matter source indicators in water column and sediments, provide a tool for reconstructing the complexity of global change effects. It remains unclear how ongoing changes in multiple environmental drivers affect the production of key lipid biomarkers in marine phytoplankton. Here, we tested the responses of sterols, alkenones and fatty acids (FAs) in the diatom Phaeodactylum tricornutum, the cryptophyte Rhodomonas sp. and the haptophyte Emiliania huxleyi under a full-factorial combination of three temperatures (12, 18 and 24 °C), three N : P supply ratios (molar ratios 10 : 1, 24 : 1 and 63 : 1) and two pCO2 levels (560 and 2400 µatm) in semi-continuous culturing experiments. Overall, N and P deficiency had a stronger effect on per-cell contents of sterols, alkenones and FAs than warming and enhanced pCO2. Specifically, P deficiency caused an overall increase in biomarker production in most cases, while N deficiency, warming and high pCO2 caused non-systematic changes. Under future ocean scenarios, we predict an overall decrease in carbon-normalized contents of sterols and polyunsaturated fatty acids (PUFAs) in E. huxleyi and P. tricornutum, and a decrease in sterols but an increase in PUFAs in Rhodomonas sp. Variable contents of lipid biomarkers indicate a diverse carbon allocation between marine phytoplankton species in response to changing environments. Thus, it is necessary to consider the changes in key lipids and their consequences for food web dynamics and biogeochemical cycles, when predicting the influence of global change on marine ecosystems.


2021 ◽  
Author(s):  
◽  
Gustav Kessel

<p>Global change is increasingly impacting coastal marine systems. Organisms inhabiting the intertidal zone may be especially vulnerable to additional anthropogenic influences, which augment the naturally stressful, highly variable conditions to which they are already subjected and may lead to the manifestation of artificially severe carry-over effects (COEs). In marine invertebrates with complex life histories, COEs can occur between life stages, when the conditions experienced by one stage influence the characteristics or performance of the next, as well as trans-generationally, in which case the environment experienced by a parental generation affects offspring. Most of the existing literature surrounding COEs focuses only on those between life stages or generations, seldom both simultaneously, and do so with the implementation of only a single stressor. In nature however, organisms may be affected by both forms of COE, since the presence of one does not preclude the other, and are invariably subjected to multiple co-occurring stressors that can interact in complex ways. Consequently, how trans-generational COEs might impact the propagation of stress through offspring life stages remains unclear, and how these processes operate in a global change context is little understood. It was here aimed to elucidate the role of COEs under ongoing global change by addressing these common literature imitations and taking the novel approach of examining how the effects of multiple, global change-associated stressors carry-over from a parental generation through their offspring’s life stages in order to provide a more realistic representation of the conditions under which COEs manifest in the field.  This was done using Siphonaria australis, an intertidal pulmonate limpet that deposits benthic egg masses, from which hatch planktonic veliger larvae. Adult S. australis were subjected to one of four treatments for 4h/day over four weeks to induce trans-generational COEs: a no-stress control, a pollution treatment with added copper (5.0μg/L), a “climate change” treatment with elevated temperature (25°C) and UVR (1.7W/m2), and a full global change treatment incorporating all three stressors. At the end of this period, the egg masses laid under each of these adult treatments were subjected to further experimentation for two weeks by being redistributed among the same four treatments again, so as to produce 16 unique treatment histories of adult-to-egg mass stress. Of these, 11 provided successfully hatching larvae, which were reared and observed for COEs between life stages (from egg to larva) under ambient conditions (ie. no added stressors) for 27 days.  In adult S. australis survivor size, the size of egg masses laid and the size of individual eggs varied in complex ways over time and across treatments, while the number of survivors was unaffected by stress. Egg masses were unaffected in terms of hatching time but displayed strong responses to parental and developmental stress exposure through hatching success, and the percentage of viable eggs per egg mass, with the latter clearly declining according to adult treatment severity and both showing trans-generational COEs. Larval characteristics were extremely varied across treatment histories and highly context-dependent as hatching size, size reached by 27 days, growth rate, and size at death all showed evidence of COEs between generations and life stages, as well as interaction between both types of COE, with the number of survivors again being the only unaffected response variable. Overall, trans-generational COEs were slightly more common than those between life stages.  These results show that both forms of COE, each triggered by exposure to multiple stressors in progenitors and developmental stages, interact to form highly context-dependent legacies of mostly impaired performance in S. australis larvae. This implies that COEs may become more prominent with worsening stressors in the future and suggests that the role of COEs in the persistence of marine invertebrates under ongoing global change may so far have been underestimated by the existing literature.</p>


2021 ◽  
Author(s):  
Francesco Mattei ◽  
Michele Scardi

Phytoplankton primary production is a key oceanographic process. It has intimate relationships with the marine food webs dynamics, the global carbon cycle and the Earth’s climate. The study of phytoplankton production on a global scale relies on indirect approaches due to the difficulties associated with field campaigns. On the other hand, modelling approaches require in situ data for both calibration and validation. In fact, the need for more phytoplankton primary production data was highlighted several times during the last decades.Most of the available primary production datasets are scattered in various repositories, reporting heterogeneous information and missing records. For these reasons we decided to retrieve field measurements of marine phytoplankton primary production from several sources and create a homogeneous and ready to use dataset. We handled missing data and added several variables related to primary production which were not present in the original datasets. Subsequently, we carried out a general analysis of the dataset in which we highlighted the relationships between the variables from a numerical and an ecological perspective.Data paucity is one of the main issues hindering the comprehension of complex natural processes.In this framework, we believe that an updated and improved global dataset, complemented by an analysis of its characteristics, can be of interest to anyone studying marine phytoplankton production and the processes related to it.


2013 ◽  
Vol 10 (6) ◽  
pp. 4341-4356 ◽  
Author(s):  
J. A. Bonachela ◽  
S. D. Allison ◽  
A. C. Martiny ◽  
S. A. Levin

Abstract. The elemental ratios of marine phytoplankton emerge from complex interactions between the biotic and abiotic components of the ocean, and reflect the plastic response of individuals to changes in their environment. The stoichiometry of phytoplankton is, thus, dynamic and dependent on the physiological state of the cell. We present a theoretical model for the dynamics of the carbon, nitrogen and phosphorus contents of a phytoplankton population. By representing the regulatory processes controlling nutrient uptake, and focusing on the relation between nutrient content and protein synthesis, our model qualitatively replicates existing experimental observations for nutrient content and ratios. The population described by our model takes up nutrients in proportions that match the input ratios for a broad range of growth conditions. In addition, there are two zones of single-nutrient limitation separated by a wide zone of co-limitation. Within the co-limitation zone, a single point can be identified where nutrients are supplied in an optimal ratio. When different species compete, the existence of a wide co-limitation zone implies a more complex pattern of coexistence and exclusion compared to previous model predictions. However, additional comprehensive laboratory experiments are needed to test our predictions. Our model contributes to the understanding of the global cycles of oceanic nitrogen and phosphorus, as well as the elemental ratios of these nutrients in phytoplankton populations.


Sign in / Sign up

Export Citation Format

Share Document