scholarly journals LVIII. A treatise on the precession of the equinoxes, and in general on the motion of the nodes, and the alteration of the inclination of the orbit of a planet to the ecliptic. Inscribed to the gentlemen of the Royal Society, by M. De St. Jaques Silvabelle.

1753 ◽  
Vol 48 ◽  
pp. 385-441
Keyword(s):  
The Sun ◽  

If the earth were perfectly spherical, the action of the sun on all the parts which compose it, would not produce any effect to make it turn round its centre

1765 ◽  
Vol 55 ◽  
pp. 326-344 ◽  

The observations of the late transit of Venus, though made with all possible care and accuracy, have not enabled us to determine with certainty the real quantity of the sun's parallax; since, by a comparison of the observations made in several parts of the globe, the sun's parallax is not less than 8" 1/2, nor does it seem to exceed 10". From the labours of those gentlemen, who have attempted to deduce this quantity from the theory of gravity, it should seem that the earth performs its annual revolution round the sun at a greater distance than is generally imagined: since Mr. Professor Stewart has determined the sun's parallax to be only 6', 9, and Mr. Mayer, the late celebrated Professor at Gottingen, who hath brought the lunar tables to a degree of perfection almost unexpected, is of opinion that it cannot exceed 8".


1879 ◽  
Vol 29 (196-199) ◽  
pp. 166-168

In a recent communication to the Royal Society, Mr. Lockyer has criticised our statement of Young’s wave-length identifications of certain chromospheric lines. As to the wave-length, we have throughout our table omitted all figures after the decimal point merely for the sake of not cumbering the table. The numbers, Young tells us, are not his own, but taken from Ǻngström’s catalogue. Moreover, as to Young’s identifications with metallic lines, he states expressly that they were taken from the maps of Kirchhoff, Ǻngström, and Thalén, and Watts’s “Index of Spectra.” But our object was not to criticise Young’s work, but only to use it for the purpose of comparing the behaviour of certain metals on the earth and in the sun, and the conditions under which certain lines appear, or do not appear, or are reversed.


A little over two hundred years ago a number of serious and learned men in Copenhagen, London, Paris, St Petersbourg, Stockholm and elsewhere, men who were academicians, Fellows of the Royal Society, Lords of the Admiralty, politicians and the like, had been thinking seriously and learnedly about the behaviour of Venus, not, of course, about Venus as represented coldly and chastely by the marble statues being imported from Italy or more warmly in the paintings of Boucher and his contemporaries, but about her far distant planet which was calculated to pass across the disk of the Sun in 1769 and not to make another such transit until 1874. Observations of the 1769 transit at widely separated stations would provide, it was hoped, the means of calculating the distance of the Earth from the Sun. The Royal Society in London, having set up in November 1767 a sub-committee ‘to consider the places proper to observe the coming Transit of Venus’ and other particulars relevant to the same, presented a memorial to King George III outlining possible benefits to science and navigation from observations made in the Pacific Ocean and received in return the promise of £4000 and a suitable ship provided by the Royal Navy (8).


1960 ◽  
Vol 13 (4) ◽  
pp. 365-382
Author(s):  
Harold Spencer Jones

This year the Royal Society celebrates the third centenary of its foundation. In this paper Sir Harold Spencer Jones, the late Astronomer Royal, who was the Institute's first President, describes the early years of the Society and shows how closely some of its work was related to navigation.For some two thousand years, until well into the seventeenth century, the writings of the ancient Greek philosophers, and in particular those of Aristotle, were regarded as the supreme fountain of wisdom and the source of all knowledge. The break with the Aristotelian dogma may be said to have started with the publication by Copernicus in 1543 of his De Revolutionibus Orbium Coelestium whereby the Earth was displaced from proud position as the centre of the Universe, fixed and immovable, and asserted to be not only rotating around an axis but also to be merely one of a system of planets revolving around the Sun as a centre. Copernicus had refrained for thirty years from publishing his theory as he knew that it would be received with ridicule, not merely because it was not in accordance with Aristotelian dogma but also because it would be held to be against the Scriptures. The Copernican theory met, in fact, with widespread opposition and more than a century elapsed before it came to be generally accepted; for long it was regarded as merely a convenient mathematical representation of the motions of the planets without any true physical basis.


Author(s):  
A. Cook

Fellows of The Royal Society have been concerned with the definition and measurement of time from the first days of the Society. John Flamsteed, F.R.S., ‘Royal Astronomer’, showed that the rotation of the Earth was isochronous and that the length of the solar day varied with the season because the path of the Earth about the Sun was an ellipse inclined to the Equator of the Earth. In the 20th century, D.W. Dye, F.R.S., made quartz oscillators that replaced mechanical clocks, and L. Essen, F.R.S., brought into use at the National Physical Laboratory the first caesium beam frequency standard and advocated that atomic time should replace astronomical time as the standard. The Society supported the development of chronometers for use at sea to determine longitude, and Fellows used the electric telegraph to find longitude in India. Edmond Halley, F.R.S., estimated the age of the Earth from the saltiness of lakes and seas; Lord Kelvin, F.R.S., estimated the rate at which energy was being radiated from the Sun; and Lord Rutherford, F.R.S., showed how the ages of rocks and of the Earth could be found from decay of radioactive minerals in them.


1997 ◽  
Vol 161 ◽  
pp. 761-776 ◽  
Author(s):  
Claudio Maccone

AbstractSETI from space is currently envisaged in three ways: i) by large space antennas orbiting the Earth that could be used for both VLBI and SETI (VSOP and RadioAstron missions), ii) by a radiotelescope inside the Saha far side Moon crater and an Earth-link antenna on the Mare Smythii near side plain. Such SETIMOON mission would require no astronaut work since a Tether, deployed in Moon orbit until the two antennas landed softly, would also be the cable connecting them. Alternatively, a data relay satellite orbiting the Earth-Moon Lagrangian pointL2would avoid the Earthlink antenna, iii) by a large space antenna put at the foci of the Sun gravitational lens: 1) for electromagnetic waves, the minimal focal distance is 550 Astronomical Units (AU) or 14 times beyond Pluto. One could use the huge radio magnifications of sources aligned to the Sun and spacecraft; 2) for gravitational waves and neutrinos, the focus lies between 22.45 and 29.59 AU (Uranus and Neptune orbits), with a flight time of less than 30 years. Two new space missions, of SETI interest if ET’s use neutrinos for communications, are proposed.


2019 ◽  
Vol 15 (1) ◽  
pp. 73-77
Author(s):  
Valentina V. Ukraintseva ◽  
Keyword(s):  
The Sun ◽  

Author(s):  
David Fisher

There are eight columns in the Periodic Table. The eighth column is comprised of the rare gases, so-called because they are the rarest elements on earth. They are also called the inert or noble gases because, like nobility, they do no work. They are colorless, odorless, invisible gases which do not react with anything, and were thought to be unimportant until the early 1960s. Starting in that era, David Fisher has spent roughly fifty years doing research on these gases, publishing nearly a hundred papers in the scientific journals, applying them to problems in geophysics and cosmochemistry, and learning how other scientists have utilized them to change our ideas about the universe, the sun, and our own planet. Much Ado about (Practically) Nothing will cover this spectrum of ideas, interspersed with the author's own work which will serve to introduce each gas and the important work others have done with them. The rare gases have participated in a wide range of scientific advances-even revolutions-but no book has ever recorded the entire story. Fisher will range from the intricacies of the atomic nucleus and the tiniest of elementary particles, the neutrino, to the energy source of the stars; from the age of the earth to its future energies; from life on Mars to cancer here on earth. A whole panoply that has never before been told as an entity.


Author(s):  
Charles Dickens ◽  
Dennis Walder

Dombey and Son ... Those three words conveyed the one idea of Mr. Dombey's life. The earth was made for Dombey and Son to trade in, and the sun and moon were made to give them light.' The hopes of Mr Dombey for the future of his shipping firm are centred on his delicate son Paul, and Florence, his devoted daughter, is unloved and neglected. When the firm faces ruin, and Dombey's second marriage ends in disaster, only Florence has the strength and humanity to save her father from desolate solitude. This new edition contains Dickens's prefaces, his working plans, and all the original illustrations by ‘Phiz’. The text is that of the definitive Clarendon edition. It has been supplemented by a wide-ranging Introduction, highlighting Dickens's engagement with his times, and the touching exploration of family relationships which give the novel added depth and relevance.


Sign in / Sign up

Export Citation Format

Share Document