scholarly journals In vivo induction of interferon-alpha in pig by non-infectious coronavirus: tissue localization and in situ phenotypic characterization of interferon-alpha-producing cells.

1997 ◽  
Vol 78 (10) ◽  
pp. 2483-2487 ◽  
Author(s):  
S Riffault ◽  
C La Bonnardi√®re ◽  
B Charley ◽  
C Carrat ◽  
L Besnardeau
Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 70
Author(s):  
Lourdes Mateos-Hernández ◽  
Natália Pipová ◽  
Eléonore Allain ◽  
Céline Henry ◽  
Clotilde Rouxel ◽  
...  

Neuropeptides are small signaling molecules expressed in the tick central nervous system, i.e., the synganglion. The neuronal-like Ixodes scapularis embryonic cell line, ISE6, is an effective tool frequently used for examining tick–pathogen interactions. We detected 37 neuropeptide transcripts in the I. scapularis ISE6 cell line using in silico methods, and six of these neuropeptide genes were used for experimental validation. Among these six neuropeptide genes, the tachykinin-related peptide (TRP) of ISE6 cells varied in transcript expression depending on the infection strain of the tick-borne pathogen, Anaplasma phagocytophilum. The immunocytochemistry of TRP revealed cytoplasmic expression in a prominent ISE6 cell subpopulation. The presence of TRP was also confirmed in A. phagocytophilum-infected ISE6 cells. The in situ hybridization and immunohistochemistry of TRP of I. scapularis synganglion revealed expression in distinct neuronal cells. In addition, TRP immunoreaction was detected in axons exiting the synganglion via peripheral nerves as well as in hemal nerve-associated lateral segmental organs. The characterization of a complete Ixodes neuropeptidome in ISE6 cells may serve as an effective in vitro tool to study how tick-borne pathogens interact with synganglion components that are vital to tick physiology. Therefore, our current study is a potential stepping stone for in vivo experiments to further examine the neuronal basis of tick–pathogen interactions.


Author(s):  
Alex E. Roher ◽  
Kenneth C. Palmer ◽  
John Capodilupo ◽  
Arun R. Wakade ◽  
Melvyn J. Ball

ABSTRACT:Purification of amyloid plaque core proteins (APCP) from Alzheimer's disease brains to complete homogeneity and in high yield permitted its chemical fractionation and characterization of its components. APCP is mainly made of β-amyloid (βA) and an assortment of glycoproteins (accounting for 20%) rich in carbohydrates compatible with N-and O-linked saccharides. When added to tissue culture of sympathetic and sensory neurons APCP and βA inhibited neuritic sprouting, a reversible phenomenon at low doses. Higher concentrations of both substances kill the neurons in culture. APCP is significantly more toxic than βA, suggesting the minor components may play an important role in increasing the toxicity of βA. If the observed toxic effects of APCP in situ are occurring in vivo during the course of AD, then the accumulation of these extracellular proteins could be largely responsible for some of the neuronal death observed in this neuropathology.


2002 ◽  
Vol 70 (6) ◽  
pp. 3080-3084 ◽  
Author(s):  
Bhavna G. Gordhan ◽  
Debbie A. Smith ◽  
Heidi Alderton ◽  
Ruth A. McAdam ◽  
Gregory J. Bancroft ◽  
...  

ABSTRACT A mutant of Mycobacterium tuberculosis defective in the metabolism of l-arginine was constructed by allelic exchange mutagenesis. The argF mutant strain required exogenous l-arginine for growth in vitro, and in the presence of 0.96 mM l-arginine, it achieved a growth rate and cell density in stationary phase comparable to those of the wild type. The mutant strain was also able to grow in the presence of high concentrations of argininosuccinate, but its auxotrophic phenotype could not be rescued by l-citrulline, suggesting that the ΔargF::hyg mutation exerted a polar effect on the downstream argG gene but not on argH. The mutant strain displayed reduced virulence in immunodeficient SCID mice and was highly attenuated in immunocompetent DBA/2 mice, suggesting that l-arginine availability is restricted in vivo.


2021 ◽  
Author(s):  
ITAMAR NECKEL ◽  
Lucas F. de Castro ◽  
Flavia Callefo ◽  
Verônica Teixeira ◽  
Angelo Gobbi ◽  
...  

Abstract Shedding synchrotron light on microfluidic systems, exploring several contrasts in situ operando at the nanoscale, like X-ray fluorescence, diffraction, luminescence, and absorption, has the potential to reveal new properties and functionalities of materials across diverse areas, such as green energy, photonics, and nanomedicine. In this work, we present the micro-fabrication and characterization of a multifunctional polyester/glass sealed microfluidic device well-suited to combine with analytical X-ray techniques. The device consists of smooth microchannels patterned on glass, where three gold electrodes are deposited into the channels to serve in situ electrochemistry analysis or standard electrical measurements. It has been efficiently sealed through an ultraviolet-sensitive sticker-like layer based on a polyester film, and The burst pressure determined by pumping water through the microchannel(up to 0.22 MPa). Overall, the device has demonstrated exquisite chemical resistance to organic solvents, and its efficiency in the presence of biological samples (proteins) is remarkable. The device potentialities, and its high transparency to X-rays, have been demonstrated by taking advantage of the X-ray nanoprobe Carnaúba/Sirius/LNLS, by obtaining 2D X-ray nanofluorescence maps on the microchannel filled with water and after an electrochemical nucleation reaction. To wrap up, the microfluidic device characterized here has the potential to be employed in standard laboratory experiments as well as in situ and in vivo analytical experiments using a wide electromagnetic window, from infrared to X-rays, which could serve experiments in many branches of science.


2001 ◽  
Vol 86 (07) ◽  
pp. 130-137 ◽  
Author(s):  
Jay Degen

SummaryNearly all of the genes encoding the established coagulation and fibrinolytic factors have been successfully altered or disrupted in transgenic mice. Although comprehensive studies of each of these genetargeted mouse lines are still ongoing, the initial findings have significantly refined our understanding of the roles of selected hemostatic factors in vivo, and occasionally altered long-standing concepts. This review summarizes some of the progress that has been made in the generation and phenotypic characterization of mice lacking key hemostatic factors, including coagulation, fibrinolytic, platelet and endothelial cell-associated factors. New insights regarding the role(s) and interplay of hemostatic factors that have emerged from detailed studies of mice carrying multiple deficits in coagulation and fibrinolytic system components are highlighted.


2019 ◽  
Vol 14 (8) ◽  
pp. 753-768 ◽  
Author(s):  
Yifan Wu ◽  
Jianqiao Hong ◽  
Guangyao Jiang ◽  
Sihao Li ◽  
Shiming Chen ◽  
...  

Aim: To investigate whether platelet-rich gel (PRG) incorporation could promote meniscal regeneration of the silk scaffold. Materials & methods: A PRG-incorporated silk sponge was fabricated for reconstruction of the meniscus in a rabbit meniscectomy model. Subsequently, characterization of the scaffold, as well as the in vitro cytocompatibility and in vivo function was evaluated. Results: Our results showed that the PRG-incorporated silk scaffold provided a sustained release of TGF-β1 over 1 week. The PRG enhanced the cytocompatibility in vitro and cell infiltration in vivo of the silk sponge. Meanwhile, the implantation of the composite in situ ameliorated the cartilage degeneration in knee at 3 months. Conclusion: These findings indicated that PRG-incorporated silk scaffold could promote functional regeneration of the meniscus and effectively prevented subsequent osteoarthritis after meniscectomy.


Bone ◽  
2004 ◽  
Vol 34 (4) ◽  
pp. 697-709 ◽  
Author(s):  
Nadia Rucci ◽  
Enrico Ricevuto ◽  
Corrado Ficorella ◽  
Maurizio Longo ◽  
Marie Perez ◽  
...  

1996 ◽  
Vol 16 (1) ◽  
pp. 192-201 ◽  
Author(s):  
N D Stroumbakis ◽  
Z Li ◽  
P P Tolias

NF-X1 is a novel cytokine-inducible transcription factor that has been implicated in the control of immune responses in humans, presumably by regulating expression of class II major histocompatibility genes. Here we report the cloning and genetic characterization of the first reported NF-X1 homolog, which is encoded by the Drosophila melanogaster shuttle craft (stc) gene. The deduced sequence of the fly and human proteins defines a new family of molecules distinguished by a novel cysteine-rich DNA-binding motif (consisting of seven copies of the consensus sequence Cx3Cx3LxCGx0-5HxCx3CHxGxCx2Cx7-9CxC). We have identified and begun a phenotypic characterization of mutations in the stc gene. stc mutants die at the end of embryogenesis, when they appear to be incapable of coordinating the typical peristaltic contraction waves normally required for embryos to hatch into feeding first instar larvae. Preliminary evidence indicates that the resulting lethality of this behavioral defect is accompanied by subtle morphological abnormalities in the central nervous system, where in wild-type embryos, STC protein is normally localized in the nuclei of repeated cell clusters within each neuromere and brain lobe. Thus, the NF-X1 homolog encoded by the Drosophila stc gene defines a new family of putative transcription factors and plays an essential role in the completion of embryonic development. This study presents the first in vivo genetic analysis of a member of this new protein family.


Sign in / Sign up

Export Citation Format

Share Document