scholarly journals Sequence analysis and genomic organization of Aphid lethal paralysis virus: a new member of the family Dicistroviridae

2002 ◽  
Vol 83 (12) ◽  
pp. 3131-3138 ◽  
Author(s):  
M. van Munster ◽  
A. M. Dullemans ◽  
M. Verbeek ◽  
J. F. J. M. van den Heuvel ◽  
A. Clérivet ◽  
...  

The complete nucleotide sequence of the genomic RNA of an aphid-infecting virus, Aphid lethal paralysis virus (ALPV), has been determined. The genome is 9812 nt in length and contains two long open reading frames (ORFs), which are separated by an intergenic region of 163 nt. The first ORF (5′ ORF) is preceded by an untranslated leader sequence of 506 nt, while an untranslated region of 571 nt follows the second ORF (3′ ORF). The deduced amino acid sequences of the 5′ ORF and 3′ ORF products respectively showed similarity to the non-structural and structural proteins of members of the newly recognized genus Cripavirus (family Dicistroviridae). On the basis of the observed sequence similarities and identical genome organization, it is proposed that ALPV belongs to this genus. Phylogenetic analysis showed that ALPV is most closely related to Rhopalosiphum padi virus, and groups in a cluster with Drosophila C virus and Cricket paralysis virus, while the other members of this genus are more distantly related. Infectivity experiments showed that ALPV can not only infect aphid species but is also able to infect the whitefly Trialeurodes vaporariorum, extending its host range to another family of the order Hemiptera.

2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Tengyu Chang ◽  
Mengmeng Guo ◽  
Wei Zhang ◽  
Jinzhi Niu ◽  
Jin-Jun Wang

Abstract We report a new positive-sense single-stranded RNA (ss RNA+) virus from the brown citrus aphid Aphis citricidus. The 20,300 nucleotide (nt)-long viral genome contains five open-reading frames and encodes six conserved domains (TM2, 3CLpro, TM3, RdRp, Zm, and HEL1). Phylogenetic analysis and amino acid sequence analysis revealed this virus might belong to an unassigned genus in the family Mesoniviridae. The presence of the virus was also confirmed in the field population. Importantly, analysis of the virus-derived small RNAs showed a 22-nt peak, implying that viral infection triggers the small interfering RNA pathway as antiviral immunity in aphids. This is the first report of a mesonivirus in invertebrates other than mosquitoes.


2021 ◽  
Vol 11 (4) ◽  
pp. 1602
Author(s):  
Lihua Xu ◽  
Dengfeng Li ◽  
Yigang Tong ◽  
Jing Fang ◽  
Rui Yang ◽  
...  

Vibrio mediterranei 117-T6 is extensively pathogenic to several Pyropia species, leading to the death of conchocelis. In this study, the first V. mediterranei phage (named Vibrio phage Yong-XC31, abbreviated as Yong-XC31) was isolated. Yong-XC31 is a giant phage containing an icosahedral head about 113 nm in diameter and a contractible tail about 219 nm in length. The latent period of Yong-XC31 is 30 min, and burst size is 64,227. Adsorption rate of Yong-XC31 to V. mediterranei 117-T6 can reach 93.8% in 2 min. The phage genome consisted of a linear, double-stranded 290,532 bp DNA molecule with a G + C content of 45.87%. Bioinformatic analyses predicted 318 open reading frames (ORFs), 80 of which had no similarity to protein sequences in current (26 January 2021) public databases. Yong-XC31 shared the highest pair-wise average nucleotide identity (ANI) value of 58.65% (below the ≥95% boundary to define a species) and the highest nucleotide sequence similarity of 11.71% (below the >50% boundary to define a genus) with the closest related phage. In the proteomic tree based on genome-wide sequence similarities, Yong-XC31 and three unclassified giant phages clustered in a monophyletic clade independently between the family Drexlerviridae and Herelleviridae. Results demonstrated Yong-XC31 as a new evolutionary lineage of phage. We propose a new phage family in Caudovirales order. This study provides new insights and fundamental data for the study and application of giant phages.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Daniela Lepka ◽  
Tobias Kerrinnes ◽  
Evelyn Skiebe ◽  
Birgitt Hahn ◽  
Angelika Fruth ◽  
...  

We report the nucleotide sequence of two novel cryptic plasmids (4357 and 14 662 base pairs) carried by aYersinia enterocoliticabiotype 1A strain isolated from pork. As distinguished from most biotype 1A strains, this isolate, designated 07-04449, exhibited adherence to eukaryotic cells. The smaller plasmid pYe4449-1 carries five attributable open reading frames (ORFs) encoding the first CcdA/CcdB-like antitoxin/toxin system described for aYersiniaplasmid, a RepA-like replication initiation protein, and mobilizing factors MobA and MobC. The deduced amino acid sequences showed highest similarity to proteins described inSalmonella(CcdA/B),Klebsiella(RepA), andPlesiomonas(MobA/C) indicating genomic fluidity among members of theEnterobacteriaceae. One additional ORF with unknown function, termed ORF5, was identified with an ancestry distinct from the rest of the plasmid. While the C+G content of ORF5 is 38.3%, the rest of pYe4449-1 shows a C+G content of 55.7%. The C+G content of the larger plasmid pYe4449-2 (54.9%) was similar to that of pYe4449-1 (53.7%) and differed from that of theY. enterocoliticagenome (47.3%). Of the 14 ORFs identified on pYe4449-2, only six ORFs showed significant similarity to database entries. For three of these ORFs likely functions could be ascribed: a TnpR-like resolvase and a phage replication protein, localized each on a low C+G island, and DNA primase TraC. Two ORFs of pYe4449-2, ORF3 and ORF7, seem to encode secretable proteins. Epitope-tagging of ORF3 revealed protein expression at4°Cbut not at or above27°Csuggesting adaptation to a habitat outside swine. The hypothetical protein encoded by ORF7 is the member of a novel repeat protein family sharing theDxxGN(x)nDxxGNmotif. Our findings illustrate the exceptional gene pool diversity within the speciesY. enterocoliticadriven by horizontal gene transfer events.


2021 ◽  
Author(s):  
Yang Sun ◽  
Yan qiong Li ◽  
Wen han Dong ◽  
Ai li Sun ◽  
Ning wei Chen ◽  
...  

Abstract The complete genome of the dsRNA virus isolated from Rhizoctonia solani AG-1 IA 9–11 (designated as Rhizoctonia solani dsRNA virus 11, RsRV11 ) were determined. The RsRV11 genome was 9,555 bp in length, contained three conserved domains, SMC, PRK and RT-like super family, and encoded two non-overlapping open reading frames (ORFs). ORF1 potentially coded for a 204.12 kDa predicted protein, which shared low but significant amino acid sequence identities with the putative protein encoded by Rhizoctonia solani RNA virus HN008 (RsRV-HN008) ORF1. ORF2 potentially coded for a 132.41 kDa protein which contained the conserved motifs of the RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis indicated that RsRV11 was clustered with RsRV-HN008 in a separate clade independent of other virus families. It implies that RsRV11, along with RsRV-HN008 possibly a new fungal virus taxa closed to the family Megabirnaviridae, and RsRV11 is a new member of mycoviruses.


2020 ◽  
Author(s):  
Justin A. Bosch ◽  
Berrak Ugur ◽  
Israel Pichardo-Casas ◽  
Jorden Rabasco ◽  
Felipe Escobedo ◽  
...  

SummaryNaturally produced peptides (<100 amino acids) are important regulators of physiology, development, and metabolism. Recent studies have predicted that thousands of peptides may be translated from transcripts containing small open reading frames (smORFs). Here, we describe two previously uncharacterized peptides in Drosophila encoded by conserved smORFs, Sloth1 and Sloth2. These peptides are translated from the same bicistronic transcript and share sequence similarities, suggesting that they encode paralogs. We provide evidence that Sloth1/2 are highly expressed in neurons, localize to mitochondria, and form a complex. Double mutant analysis in animals and cell culture revealed that sloth1 and sloth2 are not functionally redundant, and their loss causes animal lethality, reduced neuronal function, impaired mitochondrial function, and neurodegeneration. These results suggest that phenotypic analysis of smORF genes in Drosophila can provide a wealth of information on the biological functions of this poorly characterized class of genes.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Jian Zeng ◽  
Yan Wang ◽  
Ju Zhang ◽  
Shixing Yang ◽  
Wen Zhang

AbstractMembers of the family Inoviridae (inoviruses) are characterized by their unique filamentous morphology and infection cycle. The viral genome of inovirus is able to integrate into the host genome and continuously releases virions without lysing the host, establishing chronic infection. A large number of inoviruses have been obtained from microbial genomes and metagenomes recently, but putative novel inoviruses remaining to be identified. Here, using viral metagenomics, we identified four novel inoviruses from cloacal swab samples of wild and breeding birds. The circular genome of those four inoviruses are 6732 to 7709 nt in length with 51.4% to 56.5% GC content and encodes 9 to 13 open reading frames, respectively. The zonula occludens toxin gene implicated in the virulence of pathogenic host bacteria were identified in all four inoviruses and shared the highest amino acid sequences identity (< 37.3%) to other reference strains belonging to different genera of the family Inoviridae and among themselves. Phylogenetic analysis indicated that all the four inoviruses were genetically far away from other strains belonging to the family Inoviridae and formed an independent clade. According to the genetic distance-based criteria, all the four inoviruses identified in the present study respectively belong to four novel putative genera in the family Inoviridae.


2002 ◽  
Vol 68 (3) ◽  
pp. 1220-1227 ◽  
Author(s):  
Masayuki Hashimoto ◽  
Mitsuru Fukui ◽  
Kouichi Hayano ◽  
Masahito Hayatsu

ABSTRACT Rhizobium sp. strain AC100, which is capable of degrading carbaryl (1-naphthyl-N-methylcarbamate), was isolated from soil treated with carbaryl. This bacterium hydrolyzed carbaryl to 1-naphthol and methylamine. Carbaryl hydrolase from the strain was purified to homogeneity, and its N-terminal sequence, molecular mass (82 kDa), and enzymatic properties were determined. The purified enzyme hydrolyzed 1-naphthyl acetate and 4-nitrophenyl acetate indicating that the enzyme is an esterase. We then cloned the carbaryl hydrolase gene (cehA) from the plasmid DNA of the strain and determined the nucleotide sequence of the 10-kb region containing cehA. No homologous sequences were found by a database homology search using the nucleotide and deduced amino acid sequences of the cehA gene. Six open reading frames including the cehA gene were found in the 10-kb region, and sequencing analysis shows that the cehA gene is flanked by two copies of insertion sequence-like sequence, suggesting that it makes part of a composite transposon.


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 432 ◽  
Author(s):  
Fangmin Hao ◽  
Mingde Wu ◽  
Guoqing Li

Here, we characterized a negative single-stranded (−ss)RNA mycovirus, Botrytis cinerea mymonavirus 1 (BcMyV1), isolated from the phytopathogenic fungus Botrytis cinerea. The genome of BcMyV1 is 7863 nt in length, possessing three open reading frames (ORF1–3). The ORF1 encodes a large polypeptide containing a conserved mononegaviral RNA-dependent RNA polymerase (RdRp) domain showing homology to the protein L of mymonaviruses, whereas the possible functions of the remaining two ORFs are still unknown. The internal cDNA sequence (10-7829) of BcMyV1 was 97.9% identical to the full-length cDNA sequence of Sclerotinia sclerotiorum negative stranded RNA virus 7 (SsNSRV7), a virus-like contig obtained from Sclerotinia sclerotiorum metatranscriptomes, indicating BcMyV1 should be a strain of SsNSRV7. Phylogenetic analysis based on RdRp domains showed that BcMyV1 was clustered with the viruses in the family Mymonaviridae, suggesting it is a member of Mymonaviridae. BcMyV1 may be widely distributed in regions where B. cinerea occurs in China and even over the world, although it infected only 0.8% of tested B. cinerea strains.


1998 ◽  
Vol 71 (1) ◽  
pp. 11-19 ◽  
Author(s):  
YUJI YASUKOCHI ◽  
TOSHIO KANDA ◽  
TOSHIKI TAMURA

To clone the Bombyx xanthine dehydrogenase (XDH) gene as a dominant marker for silkworm transgenesis, we performed nested reverse transcriptase–polymerase chain reaction (RT-PCR) using embryonic mRNA and primers designed from the conserved region of Drosophila and rat XDH genes. Sequencing of amplified 180 bp fragments showed that two different sequences were present in the fragments. Since both possessed striking similarity to XDH genes of other organisms, we considered these to be portions of silkworm XDH genes and designated them BmXDH1 and BmXDH2. Subsequently we cloned separately the entire region of the two cDNAs by PCR using phage DNA of an embryonic cDNA library and sequenced them. The two cDNAs were around 4 kb in size and possessed complete open reading frames. The deduced amino acid sequences of the two BmXDHs were very similar to each other and to those of other organisms. The expression pattern of wild-type larvae basically followed the tissue specificity of the enzyme and no significant difference was observed between the two XDH genes. The expression of both genes was detected in the XDH-deficient mutants, oq and og, but non-synonymous substitutions were specifically detected in the BmXDH1 of the oq mutant. In addition, a length polymorphism of the second intron of the BmXDH1 co-segregated with the oq translucent phenotype, suggesting that deficiency in BmXDH1 is the cause of the oq translucent phenotype.


2017 ◽  
Vol 5 (37) ◽  
Author(s):  
Yeonhwa Jo ◽  
Myung-Kyu Song ◽  
Hoseong Choi ◽  
Jae-Seong Park ◽  
Jae-Wung Lee ◽  
...  

ABSTRACT Here, we report the genome sequence of grapevine virus T (GVT), a novel single-stranded RNA virus identified from a transcriptome of grapevine. The genome of GVT is 8,701 nucleotides in length and encodes five open reading frames. GVT is a putative member of the genus Foveavirus in the family Betaflexiviridae.


Sign in / Sign up

Export Citation Format

Share Document