scholarly journals Desulfitibacter alkalitolerans gen. nov., sp. nov., an anaerobic, alkalitolerant, sulfite-reducing bacterium isolated from a district heating plant

2006 ◽  
Vol 56 (12) ◽  
pp. 2831-2836 ◽  
Author(s):  
Marie Bank Nielsen ◽  
Kasper Urup Kjeldsen ◽  
Kjeld Ingvorsen

A novel alkalitolerant, anaerobic bacterium, designated strain sk.kt5T, was isolated from a metal coupon retrieved from a corrosion-monitoring reactor of a Danish district heating plant (Skanderborg, Jutland). The cells of strain sk.kt5T were motile, rod-shaped (0.4–0.6×2.5–9.6 μm), stained Gram-positive and formed endospores. Strain sk.kt5T grew at pH 7.6–10.5 (with optimum growth at pH 8.0–9.5), at temperatures in the range 23–44 °C (with optimum growth at 35–37 °C), at NaCl concentrations in the range 0–5 % (w/v) (with optimum growth at 0–0.5 %) and required yeast extract for growth. Only a limited number of substrates were utilized as electron donors, including betaine, formate, lactate, methanol, choline and pyruvate. Elemental sulfur, sulfite, thiosulfate, nitrate and nitrite, but not sulfate or Fe(III) citrate, were used as electron acceptors. The G+C content of the DNA was 41.6 mol%. Phylogenetic analyses of the sequence data for the dsrAB genes [encoding the major subunits of dissimilatory (bi)sulfite reductase] and the 16S rRNA gene placed strain sk.kt5T within a novel lineage in the class Clostridia of the phylum Firmicutes. Taken together, the physiological and genotypic data suggest that strain sk.kt5T represents a novel species within a novel genus, for which the name Desulfitibacter alkalitolerans gen. nov., sp. nov. is proposed. The type strain of Desulfitibacter alkalitolerans is sk.kt5T (=JCM 12761T=DSM 16504T).

ZooKeys ◽  
2021 ◽  
Vol 1043 ◽  
pp. 1-20
Author(s):  
Manal Al-Kandari ◽  
P. Graham Oliver ◽  
Daniele Salvi

The rocky northern shores of Kuwait and those of the western, inner shores of Kuwait Bay are dominated by a small, densely encrusting oyster. The identity of this oyster has never been confirmed and was mistaken previously for a small Saccostrea. The shell morphology suggests that this species belongs to the subfamily Crassostreinae, but within that subfamily, the presence of marginal erect trumpet-shaped projections is so far unique. Phylogenetic analyses based on mitochondrial DNA sequence data confirmed that this species belongs to the Crassostreinae and has a sister position to the clade including Talonostrea talonata and T. zhanjiangensis. Genetic distance between this species and Talonostrea species is remarkably high, being ~20% for the cytochrome oxidase I gene and ~7% for the 16S rRNA gene. Based on morphological and molecular analyses, this oyster is therefore described here as Talonostrea salpinx Oliver, Salvi & Al-Kandari, sp. nov. Shell morphology is shown to be variable, and the different forms encountered are described. The wider distribution and origins of this species, whether native or introduced, are discussed.


2013 ◽  
Vol 80 (4) ◽  
pp. 1403-1410 ◽  
Author(s):  
Clare A. Anstead ◽  
Neil B. Chilton

ABSTRACTThe genomic DNA from four species of ixodid ticks in western Canada was tested for the presence ofRickettsiellaby PCR analyses targeting the 16S rRNA gene. Eighty-eight percent of theIxodes angustus(n= 270), 43% of theI. sculptus(n= 61), and 4% of theI. kingi(n= 93) individuals examined were PCR positive forRickettsiella, whereas there was no evidence for the presence ofRickettsiellainDermacentor andersoni(n= 45). Three different single-strand conformation polymorphism profiles of the 16S rRNA gene were detected among amplicons derived fromRickettsiella-positive ticks, each corresponding to a different sequence type. Furthermore, each sequence type was associated with a different tick species. Phylogenetic analyses of sequence data of the 16S rRNA gene and three other genes (rpsA,gidA, andsucB) revealed that all three sequence types were placed in a clade that contained species and pathotypes of the genusRickettsiella. The bacterium inI. kingirepresented the sister taxon to theRickettsiellainI. sculptus, and both formed a clade withRickettsiellagryllifrom crickets (Gryllus bimaculatus) and “R. ixodidis” fromI. woodi. In contrast, theRickettsiellainI. angustuswas not a member of this clade but was placed external to the clade comprising the pathotypes ofR. popilliae. The results indicate the existence of at least two new species ofRickettsiella: one inI. angustusand another inI. kingiandI. sculptus. However, theRickettsiellastrains inI. kingiandI. sculptusmay also represent different species because each had unique sequences for all four genes.


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 4202-4206 ◽  
Author(s):  
Hiroaki Minegishi ◽  
Yuto Yamauchi ◽  
Akinobu Echigo ◽  
Yasuhiro Shimane ◽  
Masahiro Kamekura ◽  
...  

Two halophilic moderately acidophilic archaeal strains, MH1-136-2T and MH1-370-1 were isolated from commercial salt samples made from seawater in Japan and Indonesia, respectively. Cells of the two strains were pleomorphic and Gram-stain-negative. Strain MH1-136-2T was pink pigmented, while MH1-370-1 was orange–red pigmented. Strain MH1-136-2T was able to grow at 9–30 % (w/v) NaCl (with optimum, 21 % NaCl, w/v) at pH 4.5–6.2 (optimum, pH 5.2–5.5) and at 18–55 °C (optimum, 45 °C). Strain MH1-370-1 was able to grow at 12–30 % (w/v) NaCl (optimum, 18 %, w/v) at pH 4.2–6.0 (optimum, pH 5.2–5.5) and 20–50 °C (optimum, 45 °C). Strain MH1-136-2T required at least 1 mM Mg2+, while MH1-370-1 required at least 10 mM for growth. Both strains reduced nitrate and nitrite under aerobic conditions. The 16S rRNA gene sequences of strains MH1-136-2T and MH1-370-1 were identical, and the closest relative was Halarchaeum rubridurum MH1-16-3T with 98.3 % similarity. The level of DNA–DNA relatedness between these strains was 90.9 % and 92.4 % (reciprocally), while that between MH1-136-2T and Halarchaeum acidiphilum MH1-52-1T, Halarchaeum salinum MH1-34-1T and Halarchaeum rubridurum MH1-16-3T was 37.7 %, 44.3 % and 41.1 % (each an average), respectively. Based on the phenotypic, genotypic and phylogenetic analyses, it is proposed that the isolates represent a novel species of the genus Halarchaeum , for which the name Halarchaeum nitratireducens sp. nov. is proposed. The type strain is MH1-136-2T ( = JCM 16331T = CECT 7573T) isolated from solar salt produced in Japan.


2010 ◽  
Vol 60 (11) ◽  
pp. 2535-2539 ◽  
Author(s):  
Hui-Rong Li ◽  
Yong Yu ◽  
Wei Luo ◽  
Yin-Xin Zeng

Strain ZS314T was isolated from a sandy intertidal sediment sample collected from the coastal area off the Chinese Antarctic Zhongshan Station, east Antarctica (6 ° 22′ 13″ S 7 ° 21′ 41″ E). The cells were Gram-positive, motile, short rods. The temperature range for growth was 0–26 °C and the pH for growth ranged from 5 to 10, with optimum growth occurring within the temperature range 18–23 °C and pH range 6.0–8.0. Growth occurred in the presence of 0–6 % (w/v) NaCl, with optimum growth occurring in the presence of 2–4 % (w/v) NaCl. Strain ZS314T had MK-10 as the major menaquinone and anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 as major fatty acids. The cell-wall peptidoglycan type was B2β with ornithine as the diagnostic diamino acid. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The genomic DNA G+C content was approximately 67 mol%. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain ZS314T represents a new lineage in the family Microbacteriaceae. On the basis of the phylogenetic analyses and phenotypic characteristics, a new genus, namely Marisediminicola gen. nov., is proposed, harbouring the novel species Marisediminicola antarctica sp. nov. with the type strain ZS314T (=DSM 22350T =CCTCC AB 209077T).


Zootaxa ◽  
2018 ◽  
Vol 4374 (4) ◽  
pp. 565 ◽  
Author(s):  
CALEB OFORI-BOATENG ◽  
ADAM D. LEACHÉ ◽  
BRIGHT OBENG-KANKAM ◽  
N’GORAN GERMAIN KOUAMÉ ◽  
ANNIKA HILLERS ◽  
...  

We describe a new species of Phrynobatrachus from the eastern part of the Upper Guinea forest region, Ghana, West Africa. Morphologically, the new species can be distinguished from all of its congeners by the combination of a slender body, short and pointed snout, a relatively warty dorsum, a black-spotted throat in both sexes, a gular flap in males, a dark spotted chest, a white-greyish venter with occasional blackish spots, rudimentary pedal webbing, none to slightly dilated finger tips and strongly delated toe tips, presence of both inner and outer metatarsal tubercles and absence of a dark face mask, eyelid tubercles and longer dorsal ridges. We collected mitochondrial DNA (mtDNA) sequence data from the 16S rRNA gene to measure the genetic diversity of the new species, and to estimate phylogenetic relationships. The new species is a distinct and monophyletic evolutionary lineage most closely related to Phrynobatrachus gutturosus, P. fraterculus and P. maculiventris. The discovery of this new species highlights that the biodiversity of West African forests is still incompletely known and that the few remaining forests need urgent protection. 


1995 ◽  
Vol 347 (1320) ◽  
pp. 213-234 ◽  

Phylogenedc reladonships of higher taxa of echinoids have been invesdgated using a 163 character morphological data base and molecular sequences from large and small subunit (LSU and SSU) ribosomal RNA (rRNA) genes. The complete ssu rRNA gene has been sequenced for 21 taxa, with representatives from nine of the 14 extant orders of Echinoidea. Partial LSU sequences, representing the first 400 base pairs (b.p.) from the 5' end were also sequenced for three taxa to complement an existing data base of ten taxa. The two molecular sequences provided a total of 371 variable sites, of which 143 were phylogenetically informative (compared to 145 phylogenetically informative sites from morphological data). Morphological, LSU and SSU data have been analysed separately and together. Morphological and ssu sequence data generate topologies that are not significantly in conflict (under Templeton’s test), but the strong signal pairing arbaciids with clypeasteroids in the LSU derived tree marks the LSU sequence data as anomalous for this taxon. A ‘ total evidence’ approach derived a tree very similar in topology to that derived from morphological data. Rooted on the stem group echinoid Archaeocidaris , our total evidence tree suggested relationships of higher taxa as follows: Gidaroida Phormosomatidae Echinothuriidae Diadematidae Spatangoida Clypeasteroida, Cassiduloida Calycina, Arbacioida Stomopneustidae Glyphocidaridae Temnopleuridae Echinometridae Echinidae, Strongylocentridae. Phylogenetic analyses run both with and without key fossil taxa yielded slightly different topologies. It is important to include fossil taxa in a phylogenetic analysis where there are long stem-group branches or where the crown group is highly derived.


Author(s):  
Ran Li ◽  
Wenbao Zhuang ◽  
Congcong Wang ◽  
Hamed El-Serehy ◽  
Saleh A. Al-Farraj ◽  
...  

The morphology and molecular phylogeny of Plagiopyla ovata Kahl, 1931, a poorly known anaerobic ciliate, were investigated based on a population isolated from sand samples collected from the Yellow Sea coast at Qingdao, PR China. Details of the oral ciliature are documented for the first time to our knowledge and an improved species diagnosis is given. The small subunit ribosomal RNA (SSU rRNA) gene was newly sequenced and phylogenetic analyses revealed that P. ovata clusters within the monophyletic family Plagiopylidae. However, evolutionary relationships within both the family Plagiopylidae and the genus Plagiopyla remain obscure owing to undersampling, the lack of sequence data from known species and low nodal support or unstable topologies in gene trees. A key to the identification of the species of the genus Plagiopyla with validly published names is also supplied.


2004 ◽  
Vol 54 (4) ◽  
pp. 1301-1310 ◽  
Author(s):  
R. J. Akhurst ◽  
N. E. Boemare ◽  
P. H. Janssen ◽  
M. M. Peel ◽  
D. A. Alfredson ◽  
...  

The relationship of Photorhabdus isolates that were cultured from human clinical specimens in Australia to Photorhabdus asymbiotica isolates from human clinical specimens in the USA and to species of the genus Photorhabdus that are associated symbiotically with entomopathogenic nematodes was evaluated. A polyphasic approach that involved DNA–DNA hybridization, phylogenetic analyses of 16S rRNA and gyrB gene sequences and phenotypic characterization was adopted. These investigations showed that gyrB gene sequence data correlated well with DNA–DNA hybridization and phenotypic data, but that 16S rRNA gene sequence data were not suitable for defining species within the genus Photorhabdus. Australian clinical isolates proved to be related most closely to clinical isolates from the USA, but the two groups were distinct. A novel subspecies, Photorhabdus asymbiotica subsp. australis subsp. nov. (type strain, 9802892T=CIP 108025T=ACM 5210T), is proposed, with the concomitant creation of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. Analysis of gyrB sequences, coupled with previously published data on DNA–DNA hybridization and PCR-RFLP analysis of the 16S rRNA gene, indicated that there are more than the three subspecies of Photorhabdus luminescens that have been described and confirmed the validity of the previously proposed subdivision of Photorhabdus temperata. Although a non-luminescent, symbiotic isolate clustered consistently with P. asymbiotica in gyrB phylogenetic analyses, DNA–DNA hybridization indicated that this isolate does not belong to the species P. asymbiotica and that there is a clear distinction between symbiotic and clinical species of Photorhabdus.


2004 ◽  
Vol 54 (1) ◽  
pp. 175-181 ◽  
Author(s):  
Costantino Vetriani ◽  
Mark D. Speck ◽  
Susan V. Ellor ◽  
Richard A. Lutz ◽  
Valentin Starovoytov

A thermophilic, anaerobic, chemolithoautotrophic bacterium was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at 9° 50′ N. Cells of the organism were Gram-negative, motile rods that were about 1·0 μm in length and 0·6 μm in width. Growth occurred between 60 and 80 °C (optimum at 75 °C), 0·5 and 4·5 % (w/v) NaCl (optimum at 2 %) and pH 5 and 7 (optimum at 5·5). Generation time under optimal conditions was 1·57 h. Growth occurred under chemolithoautotrophic conditions in the presence of H2 and CO2, with nitrate or sulfur as the electron acceptor and with concomitant formation of ammonium or hydrogen sulfide, respectively. Thiosulfate, sulfite and oxygen were not used as electron acceptors. Acetate, formate, lactate and yeast extract inhibited growth. No chemoorganoheterotrophic growth was observed on peptone, tryptone or Casamino acids. The genomic DNA G+C content was 54·6 mol%. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the organism was a member of the domain Bacteria and formed a deep branch within the phylum Aquificae, with Thermovibrio ruber as its closest relative (94·4 % sequence similarity). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the newly described genus Thermovibrio. The type strain is Thermovibrio ammonificans HB-1T (=DSM 15698T=JCM 12110T).


2006 ◽  
Vol 188 (9) ◽  
pp. 3345-3356 ◽  
Author(s):  
Craig Everroad ◽  
Christophe Six ◽  
Frédéric Partensky ◽  
Jean-Claude Thomas ◽  
Julia Holtzendorff ◽  
...  

ABSTRACT Chromatic adaptation (CA) in cyanobacteria has provided a model system for the study of the environmental control of photophysiology for several decades. All forms of CA that have been examined so far (types II and III) involve changes in the relative contents of phycoerythrin (PE) and/or phycocyanin when cells are shifted from red to green light and vice versa. However, the chromophore compositions of these polypeptides are not altered. Some marine Synechococcus species strains, which possess two PE forms (PEI and PEII), carry out another type of CA (type IV), occurring during shifts from blue to green or white light. Two chromatically adapting strains of marine Synechococcus recently isolated from the Gulf of Mexico were utilized to elucidate the mechanism of type IV CA. During this process, no change in the relative contents of PEI and PEII was observed. Instead, the ratio of the two chromophores bound to PEII, phycourobilin and phycoerythrobilin, is high under blue light and low under white light. Mass spectroscopy analyses of isolated PEII α- and β-subunits show that there is a single PEII protein type under all light climates. The CA process seems to specifically affect the chromophorylation of the PEII (and possibly PEI) α chain. We propose a likely process for type IV CA, which involves the enzymatic activity of one or several phycobilin lyases and/or lyase-isomerases differentially controlled by the ambient light quality. Phylogenetic analyses based on the 16S rRNA gene confirm that type IV CA is not limited to a single clade of marine Synechococcus.


Sign in / Sign up

Export Citation Format

Share Document