scholarly journals Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens

2020 ◽  
Vol 70 (8) ◽  
pp. 4432-4450 ◽  
Author(s):  
Ainsley C. Nicholson ◽  
Christopher A. Gulvik ◽  
Anne M. Whitney ◽  
Ben W. Humrighouse ◽  
Melissa E. Bell ◽  
...  

The genus Chryseobacterium in the family Weeksellaceae is known to be polyphyletic. Amino acid identity (AAI) values were calculated from whole-genome sequences of species of the genus Chryseobacterium, and their distribution was found to be multi-modal. These naturally-occurring non-continuities were leveraged to standardise genus assignment of these species. We speculate that this multi-modal distribution is a consequence of loss of biodiversity during major extinction events, leading to the concept that a bacterial genus corresponds to a set of species that diversified since the Permian extinction. Transfer of nine species ( Chryseobacterium arachidiradicis , Chryseobacterium bovis, Chryseobacterium caeni, Chryseobacterium hispanicum, Chryseobacterium hominis, Chryseobacterium hungaricum,, Chryseobacterium pallidum and Chryseobacterium zeae ) to the genus Epilithonimonas and eleven ( Chryseobacterium anthropi , Chryseobacterium antarcticum , Chryseobacterium carnis , Chryseobacterium chaponense , Chryseobacterium haifense, Chryseobacterium jeonii, Chryseobacterium montanum , Chryseobacterium palustre , Chryseobacterium solincola , Chryseobacterium treverense and Chryseobacterium yonginense ) to the genus Kaistella is proposed. Two novel species are described: Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. Evidence is presented to support the assignment of Planobacterium taklimakanense to a genus apart from Chryseobacterium, to which Planobacterium salipaludis comb nov. also belongs. The novel genus Halpernia is proposed, to contain the type species Halpernia frigidisoli comb. nov., along with Halpernia humi comb. nov., and Halpernia marina comb. nov.

Author(s):  
Peter Schumann ◽  
Franziska Kalensee ◽  
Jialan Cao ◽  
Alexis Criscuolo ◽  
Dominique Clermont ◽  
...  

In the course of screening the surface soils of ancient copper mines and smelters (East Harz, Germany) an aerobic, non-motile and halotolerant actinobacterium forming small rods or cocci was isolated. The strain designated F300T developed creamy to yellow colonies on tryptone soy agar and grew optimally at 28 °C, pH 7–8 and with 0.5–2 % (m/v) NaCl. Its peptidoglycan was of type A4α l-Lys–l-Glu (A11.54). The menaquinone profile was dominated by MK-8(II, III-H4) and contained minor amounts of MK-8(H2), MK-8(H6) and MK-9(H4). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, mono and diacylated phosphatidylinositol dimannosides, and components that were not fully characterized, including two phospholipids, two glycolipids and an uncharacterized lipid. Major whole-cell sugars were rhamnose and ribose. The fatty acid profile contained mainly iso and anteiso branched fatty acids (anteiso-C15 : 0, iso-C14 : 0) and aldehydes/dimethylacetals (i.e. not fatty acids). Sequence analysis of its genomic DNA and subsequent analysis of the data placed the isolate in the group currently defined by members of the genera Ruania and Haloactinobacterium (family Ruaniaceae , order Micrococcales ) as a sister taxon to the previously described species Haloactinobacterium glacieicola , sharing an average nucleotide identity and average amino acid identity values of 85.3 and 85.7 %, respectively. Genotypic and chemotaxonomic analyses support the view that strain F300T (=DSM 108350T=CIP 111667T) is the type strain of a new genus and new species for which the name Occultella aeris gen. nov., sp. nov. is proposed. Based on revised chemotaxonomic and additional genome based data, it is necessary to discuss and evaluate the results in the light of the classification and nomenclature of members of the family Ruaniaceae , i.e. the genera Haloactinobacterium and Ruania . Consequently, the reclassification of Haloactinobacterium glacieicola as Occultella glacieicola comb. nov. and Haloactinobacterium album as Ruania alba comb. nov., with an emended description of the genus Ruania are proposed.


Author(s):  
Soon Dong Lee ◽  
In Seop Kim ◽  
Hanna Choe ◽  
Ji-Sun Kim

A Gram-negative, facultatively anaerobic bacterium, designated SAP-6T, was isolated from sap extracted from Acer pictum in Mt. Halla in Jeju, Republic of Korea and its precise taxonomic status was determined by a polyphasic approach. Cells were non-sporulating, motile, short rods and showed growth at 4–37 °C, pH 6.0–8.0 and 0–4% NaCl. Phylogenomic analysis based on 92 core gene sequences showed that strain SAP-6T belonged to the family Pectobacteriaceae and formed a distinct clade between members of the genera Sodalis and Biostraticola with gene support index of 89. The closest phylogenetic neighbours were Biostraticola tofi DSM 19580T (97.3% 16S rRNA gene sequence similarity) and Sodalis praecaptivus HS1T (96.8%), with the average amino acid identity values of 75.3% and 74.0%, respectively. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospholipid. The major isoprenoid quinones were Q-7 and Q-8. The predominant fatty acids were C16:0, C17:0 cyclo and summed feature 3. The DNA G+C content was 57.0%. On the basis of data presented here, strain SAP-6T (=KCTC 52622T=DSM 104038T) represents a novel species of a new genus in the family Pectobacteriaceae , for which the name Acerihabitans arboris gen. nov., sp. nov. is proposed.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Laurent Poirel ◽  
Mattia Palmieri ◽  
Michael Brilhante ◽  
Amandine Masseron ◽  
Vincent Perreten ◽  
...  

ABSTRACT A carbapenem-resistant Pseudomonas synxantha isolate recovered from chicken meat produced the novel carbapenemase PFM-1. That subclass B2 metallo-β-lactamase shared 71% amino acid identity with β-lactamase Sfh-1 from Serratia fonticola. The blaPFM-1 gene was chromosomally located and likely acquired. Variants of PFM-1 sharing 90% to 92% amino acid identity were identified in bacterial species belonging to the Pseudomonas fluorescens complex, including Pseudomonas libanensis (PFM-2) and Pseudomonas fluorescens (PFM-3), highlighting that these species constitute reservoirs of PFM-like encoding genes.


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1007-1012 ◽  
Author(s):  
Pok Yui Lai ◽  
Li Miao ◽  
On On Lee ◽  
Ling-Li Liu ◽  
Xiao-Jian Zhou ◽  
...  

A slow-growing, strictly aerobic, Gram-negative, coccus bacterial strain, designated KAUST100406-0324T, was isolated from sea-floor sediment collected from the Red Sea, Saudi Arabia. The catalase- and oxidase-positive strain was non-sporulating and only slightly halophilic. Optimum growth occurred at 20–25 °C and at pH values ranging from 7.0 to 8.0. The major cellular fatty acids of the strain were unsaturated C18 : 1ω6c and/or C18 : 1ω7c, C18 : 1ω7c 11-methyl and C16 : 1ω7c and/or C16 : 1ω6c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine and two unidentified phospholipids. Ubiquinone 10 was the predominant lipoquinone. The DNA G+C content of strain KAUST100406-0324T was 64.0 mol%. Phylogenetic analysis of 16S rRNA gene sequences revealed that the novel strain belonged to the family Rhodobacteraceae of the class Alphaproteobacteria but formed a distinct evolutionary lineage from other bacterial species with validly published names. The 16S rRNA gene sequence of the novel strain was distantly related, but formed a monophyletic cluster with, those of bacteria from two moderately halophilic genera, Hwanghaeicola and Maribius . The similarity of the sequence between the novel strain KAUST100406-0324T and the type strains Hwanghaeicola aestuarii Y26T (accession number FJ230842), Maribius pelagius B5-6T (DQ514326) and Maribius salinus CL-SP27T (AY906863) were 94.5 %, 95.2 % and 95.3 %, respectively. Based on the physiological, phylogenetic and chemotaxonomic characteristics presented in this study, we propose that this strain represents a novel species of a new genus in the family Rhodobacteraceae , for which the name of Profundibacterium mesophilum gen. nov., sp. nov. was proposed, with KAUST100406-0324T ( = JCM 17872T  = NRRL B-59665T) as the type strain.


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1639-1645 ◽  
Author(s):  
Lei Zhang ◽  
Xihui Shen ◽  
Yingbao Liu ◽  
Shiqing Li

A Gram-staining-negative, rod-shaped, gliding and pale-pink-pigmented bacterium, designated strain ZLM-10T, was isolated from a soil sample collected from an arid area in Xinjiang province, China, and characterized in a taxonomic study using a polyphasic approach. The novel strain grew optimally at 30–37 °C and in the presence of 2 % (w/v) sea salts. The only respiratory quinone detected was MK-7 and the major cellular fatty acids were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 0 and iso-C17 : 0 3-OH. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid and two unidentified aminophospholipids. The DNA G+C content was 45.4 mol%. Flexirubin-type pigments were not produced. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZLM-10T was a member of the phylum Bacteroidetes and appeared most closely related to Cesiribacter roseus 311T (90.2 % sequence similarity), Marivirga sericea LMG 13021T (89.2 %), Cesiribacter andamanensis AMV16T (89.1 %) and Marivirga tractuosa DSM 4126T (89.1 %). On the basis of phenotypic and genotypic data and phylogenetic inference, strain ZLM-10T should be classified as a novel species of a new genus in the family Flammeovirgaceae , for which the name Nafulsella turpanensis gen. nov., sp. nov. is proposed. The type strain of the type species is ZLM-10T ( = CCTCC AB 208222T = KCTC 23983T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1214-1218 ◽  
Author(s):  
Julia Downes ◽  
Floyd E. Dewhirst ◽  
Anne C. R. Tanner ◽  
William G. Wade

Five strains of anaerobic, Gram-negative bacilli isolated from the human oral cavity were subjected to a comprehensive range of phenotypic and genotypic tests and were found to comprise a homogeneous group. Phylogenetic analysis of full-length 16S rRNA gene sequences showed that these strains represented a novel group within the family Prevotellaceae , and the most closely related species was Prevotella tannerae . P. tannerae and the novel taxon are deeply branched from the genus Prevotella , with sequence identities to the type strain of the type species of Prevotella , Prevotella melaninogenica , of 82.2 and 85.6 %, respectively. The novel genus Alloprevotella gen. nov. is proposed to accommodate the novel species Alloprevotella rava gen. nov., sp. nov. and the previously named Prevotella tannerae Moore et al. 1994 as Alloprevotella tannerae gen. nov., comb. nov. The type species is Alloprevotella tannerae. The type strain of Alloprevotella rava is 81/4-12T ( = DSM 22548T  = CCUG 58091T) and the type strain of Alloprevotella tannerae is ATCC 51259T  = CCUG 34292T  = CIP 104476T  = NCTC 13073T. Alloprevotella rava is weakly to moderately saccharolytic and produces moderate amounts of acetic acid and major amounts of succinic acid as end products of fermentation. Strains are sensitive to 20 % bile and hydrolyse gelatin. The principal cellular long-chain fatty acids are anteiso-C15 : 0, iso-C15 : 0, C16 : 0, iso-C17 : 0 and iso-C17 : 0 3-OH. The G+C content of the DNA of the type strain is 47 mol%.


2020 ◽  
Vol 70 (5) ◽  
pp. 3340-3347 ◽  
Author(s):  
Soon Dong Lee ◽  
In Seop Kim ◽  
Peter Schumann ◽  
Gwanpil Song

A novel Gram-stain-positive, actinobacterial strain, designated C5-26T, was isolated from soil from a natural cave in Jeju, Republic of Korea, and its taxonomic position was investigated using a polyphasic approach. The organism was aerobic, and cells were non-spore-forming, non-motile cocci that occurred singly, in pairs, in triplets, in tetrads, in short chains or in irregular clusters. Colonies of the cells were circular, convex, entire and white. The peptidoglycan type was A4α with an l-Ser–d-Asp interpeptide bridge. The whole-cell sugars comprised glucose, rhamnose, mannose, arabinose, galactose and ribose. The major menaquinone was MK-8(H4). The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unidentified phospholipid. The major fatty acids were iso-C16 : 0 and iso-C16 : 1 h. The size of the draft genome was 5.32 Mbp with depth of coverage of 161×. The G+C content of the genomic DNA was 67.1 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that the novel isolate belonged to the family Dermacoccaceae and formed a distinct subcluster at the base of the radiation of the genus Luteipulveratus . Highest sequence similarities of the novel isolate were found to the type strains of Luteipulveratus halotolerans (96.2 %), Branchiibius hedensis (95.4 %), Luteipulveratus mongoliensis (95.4 %) and Branchiibius cervicis (95.3 %). The whole genome-based phylogeny supported the novelty of the isolate at the genus level in the family Dermacoccaceae . On the basis of data from this polyphasic study, strain C5-26T (=KCTC 39632T=DSM 108676T) represents a novel species of a new genus in the family Dermacoccaceae , for which the name Leekyejoonella antrihumi gen. nov., sp. nov. is proposed.


2020 ◽  
Vol 70 (8) ◽  
pp. 4774-4781 ◽  
Author(s):  
Annemarie Siebert ◽  
Christopher Huptas ◽  
Mareike Wenning ◽  
Siegfried Scherer ◽  
Etienne V. Doll

Three strains of a Gram-stain-positive, catalase-negative, facultative anaerobic, and coccoid species were isolated from German bulk tank milk. Phylogenetic analyses based on the 16S rRNA gene sequences indicated that the three strains (WS4937T, WS4759 and WS5303) constitute an independent phylogenetic lineage within the family Aerococcaceae with Facklamia hominis CCUG 36813T (93.7–94.1 %) and Eremococcus coleocola M1831/95/2T (93.5 %) as most closely related type species. The unclassified strains demonstrated variable growth with 6.5 % (w/v) NaCl and tolerated pH 6.5–9.5. Growth was observed from 12 to 39 °C. Their cell-wall peptidoglycan belongs to the A1α type (l-Lys-direct) consisting of alanine, glutamic acid and lysine. The predominant fatty acids were C16 : 1 ω9c, C16 : 0 and C18 : 1 ω9c and in the polar lipids profile three glycolipids, a phospholipid, phosphatidylglycerol, phosphoglycolipid and diphosphatidylglycerol were found. The G+C content of strain WS4937T was 37.4 mol% with a genome size of ~3.0 Mb. Based on phylogenetic, phylogenomic and biochemical characterizations, the isolates can be demarcated from all other genera of the family Aerococcaceae and, therefore, the novel genus Fundicoccus gen. nov. is proposed. The type species of the novel genus is Fundicoccus ignavus gen. nov., sp. nov. WS4937T (=DSM 109652T=LMG 31441T).


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3040-3045 ◽  
Author(s):  
Soo-Jin Kim ◽  
Joo-Hyeon Park ◽  
Jun-Muk Lim ◽  
Jae-Hyung Ahn ◽  
Rangasamy Anandham ◽  
...  

A Gram-stain-negative, short rod-shaped, non-flagellated, yellow bacterium, designated strain 5GHs7-2T, was isolated from a greenhouse soil sample in South Korea. 16S rRNA gene sequence analysis of strain 5GHs7-2T indicated that the isolate belonged to the family Chitinophagaceae , and exhibited the highest sequence similarities with members of the genera Terrimonas (89.2–92.6 %), Sediminibacterium (90.8–91.4 %) and Chitinophaga (89.2–91.7 %), Filimonas lacunae YT21T (91.7 %), members of the genus Segetibacter (90.2–91.6 %), Parasegetibacter luojiensis RHYL-37T (90.9 %) and Flavihumibacter petaseus T41T (91.2 %). Flexirubin-type pigments were present. The major cellular fatty acids of the novel strain were iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1 G. The polar lipid profile consisted of a large amount of phosphatidylethanolamine, and moderate and small amounts of several unknown aminolipids and lipids. The only respiratory quinone of strain 5GHs7-2T was MK-7, and the DNA G+C content was 47.6 mol%. On the basis of the evidence presented, it is concluded that strain 5GHs7-2T represents a novel species of a new genus in the family Chitinophagaceae , for which the name Parafilimonas terrae gen. nov., sp. nov. is proposed. The type strain of the type species is 5GHs7-2T ( = KACC 17343T = DSM 28286T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1760-1765 ◽  
Author(s):  
Martha Helena Ramírez-Bahena ◽  
Carmen Tejedor ◽  
Isidro Martín ◽  
Encarna Velázquez ◽  
Alvaro Peix

A bacterial strain designated M1MS02T was isolated from a surface-sterilized nodule of Medicago sativa in Zamora (Spain). The 16S rRNA gene sequence of this strain showed 96.5 and 96.2 % similarity, respectively, with respect to Gluconacetobacter liquefaciens IFO 12388T and Granulibacter bethesdensis CGDNIH1T from the family Acetobacteraceae . The novel isolate was a Gram-stain-negative, non-sporulating, aerobic coccoid to rod-shaped bacterium that was motile by a subpolar flagellum. The major fatty acid was C18 : 1ω7c and the major ubiquinone was Q-10. The lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, two aminophospholipids, three aminolipids, four glycolipids, two phospholipids and one lipid. Strain M1MS02T was catalase-positive and oxidase- and urease-negative. Acetate and lactate were not oxidized. Acetic acid was produced from ethanol in culture media supplemented with 2 % CaCO3. Ammonium sulphate was assimilated in glucose medium. The strain produced dihydroxyacetone from glycerol. Phylogenetic and phenotypic analyses commonly used to differentiate genera within the family Acetobacteraceae showed that strain M1MS02T should be classified as representing a novel species of a new genus within this family, for which the name Endobacter medicaginis gen. nov., sp. nov. is proposed. The type strain of the type species is M1MS02T ( = LMG 26838T = CECT 8088T). To our knowledge, this is the first report of a member of the Acetobacteraceae occurring as a legume nodule endophyte.


Sign in / Sign up

Export Citation Format

Share Document