scholarly journals Stability of murine scrapie strain 87V after passage in sheep and comparison with the CH1641 ovine strain

2015 ◽  
Vol 96 (12) ◽  
pp. 3703-3714 ◽  
Author(s):  
Lorenzo González ◽  
Francesca Chianini ◽  
Nora Hunter ◽  
Scott Hamilton ◽  
Louise Gibbard ◽  
...  

Breed- and prion protein (PRNP) genotype-related disease phenotype variability has been observed in sheep infected with the 87V murine scrapie strain. Therefore, the stability of this strain was tested by inoculating sheep-derived 87V brain material back into VM mice. As some sheep-adapted 87V disease phenotypes were reminiscent of CH1641 scrapie, transgenic mice (Tg338) expressing ovine prion protein (PrP) were inoculated with the same sheep-derived 87V sources and with CH1641. Although at first passage in VM mice the sheep-derived 87V sources showed some divergence from the murine 87V control, all the characteristics of murine 87V infection were recovered at second passage from all sheep sources. These included 100 % attack rates and indistinguishable survival times, lesion profiles, immunohistochemical features of disease-associated PrP accumulation in the brain and PrP biochemical properties. All sheep-derived 87V sources, as well as CH1641, were transmitted to Tg338 mice with identical clinical, pathological, immunohistochemical and biochemical features. While this might potentially indicate that sheep-adapted 87V and CH1641 are the same strain, profound divergences were evident, as murine 87V was unable to infect Tg338 mice but was lethal for VM mice, while the reverse was true for CH1641. These combined data suggest that: (i) murine 87V is stable and retains its properties after passage in sheep; (ii) it can be isolated from sheep showing a CH1641-like or a more conventional scrapie phenotype; and (iii) sheep-adapted 87V scrapie, with conventional or CH1641-like phenotype, is biologically distinct from experimental CH1641 scrapie, despite the fact that they behave identically in a single transgenic mouse line.  

2004 ◽  
Vol 85 (8) ◽  
pp. 2471-2478 ◽  
Author(s):  
Sarah E. Lloyd ◽  
Jacqueline M. Linehan ◽  
Melanie Desbruslais ◽  
Susan Joiner ◽  
Jennifer Buckell ◽  
...  

Distinct prion strains can be distinguished by differences in incubation period, neuropathology and biochemical properties of disease-associated prion protein (PrPSc) in inoculated mice. Reliable comparisons of mouse prion strain properties can only be achieved after passage in genetically identical mice, as host prion protein sequence and genetic background are known to modulate prion disease phenotypes. While multiple prion strains have been identified in sheep scrapie and Creutzfeldt–Jakob disease, bovine spongiform encephalopathy (BSE) is thought to be caused by a single prion strain. Primary passage of BSE prions to different lines of inbred mice resulted in the propagation of two distinct PrPSc types, suggesting that two prion strains may have been isolated. To investigate this further, these isolates were subpassaged in a single line of inbred mice (SJL) and it was confirmed that two distinct prion strains had been identified. MRC1 was characterized by a short incubation time (110±3 days), a mono-glycosylated-dominant PrPSc type and a generalized diffuse pattern of PrP-immunoreactive deposits, while MRC2 displayed a much longer incubation time (155±1 days), a di-glycosylated-dominant PrPSc type and a distinct pattern of PrP-immunoreactive deposits and neuronal loss. These data indicate a crucial involvement of the host genome in modulating prion strain selection and propagation in mice. It is possible that multiple disease phenotypes may also be possible in BSE prion infection in humans and other animals.


2004 ◽  
Vol 71 ◽  
pp. 193-202 ◽  
Author(s):  
David R Brown

Prion diseases, also referred to as transmissible spongiform encephalopathies, are characterized by the deposition of an abnormal isoform of the prion protein in the brain. However, this aggregated, fibrillar, amyloid protein, termed PrPSc, is an altered conformer of a normal brain glycoprotein, PrPc. Understanding the nature of the normal cellular isoform of the prion protein is considered essential to understanding the conversion process that generates PrPSc. To this end much work has focused on elucidation of the normal function and activity of PrPc. Substantial evidence supports the notion that PrPc is a copper-binding protein. In conversion to the abnormal isoform, this Cu-binding activity is lost. Instead, there are some suggestions that the protein might bind other metals such as Mn or Zn. PrPc functions currently under investigation include the possibility that the protein is involved in signal transduction, cell adhesion, Cu transport and resistance to oxidative stress. Of these possibilities, only a role in Cu transport and its action as an antioxidant take into consideration PrPc's Cu-binding capacity. There are also more published data supporting these two functions. There is strong evidence that during the course of prion disease, there is a loss of function of the prion protein. This manifests as a change in metal balance in the brain and other organs and substantial oxidative damage throughout the brain. Thus prions and metals have become tightly linked in the quest to understand the nature of transmissible spongiform encephalopathies.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 55 ◽  
Author(s):  
Muhammad Syafiq Mohd Razib ◽  
Raja Noor Zaliha Raja Abd Rahman ◽  
Fairolniza Mohd Shariff ◽  
Mohd Shukuri Mohamad Ali

Cross-linked enzyme aggregates (CLEAs) is an immobilization technique that can be used to customize enzymes under an optimized condition. Structural analysis on any enzyme treated with a CLEA remains elusive and has been less explored. In the present work, a method for preparing an organic solvent tolerant protease using a CLEA is disclosed and optimized for better biochemical properties, followed by an analysis of the structure of this CLEA-treated protease. The said organic solvent tolerant protease is a metalloprotease known as elastase strain K in which activity of the metalloprotease is measured by a biochemical interaction with azocasein. Results showed that when a glutaraldehyde of 0.02% (v/v) was used under a 2 h treatment, the amount of recovered activity in CLEA-elastase was highest. The recovered activity of CLEA-elastase and CLEA-elastase-SB (which was a CLEA co-aggregated with starch and bovine serum albumin (BSA)) were at an approximate 60% and 80%, respectively. The CLEA immobilization of elastase strain K allowed the stability of the enzyme to be enhanced at high temperature and at a broader pH. Both CLEA-elastase and CLEA-elastase-SB end-products were able to maintain up to 67% enzyme activity at 60 °C and exhibiting an enhanced stability within pH 5–9 with up to 90% recovering activity. By implementing a CLEA on the organic solvent tolerant protease, the characteristics of the organic solvent tolerant were preserved and enhanced with the presence of 25% (v/v) acetonitrile, ethanol, and benzene at 165%, 173%, and 153% relative activity. Structural analysis through SEM and dynamic light scattering (DLS) showed that CLEA-elastase had a random aggregate morphology with an average diameter of 1497 nm.


Pathogens ◽  
2013 ◽  
Vol 2 (1) ◽  
pp. 92-104 ◽  
Author(s):  
Kazuo Kasai ◽  
Yoshifumi Iwamaru ◽  
Kentaro Masujin ◽  
Morikazu Imamura ◽  
Shirou Mohri ◽  
...  
Keyword(s):  

2000 ◽  
Vol 352 (1) ◽  
pp. 191-196 ◽  
Author(s):  
Flavio MEGGIO ◽  
Alessandro NEGRO ◽  
Stefania SARNO ◽  
Maria RUZZENE ◽  
Alessandro BERTOLI ◽  
...  

On the basis of far-Western blot and plasmon resonance (BIAcore) experiments, we show here that recombinant bovine prion protein (bPrP) (25–242) strongly interacts with the catalytic α/α´ subunits of protein kinase CK2 (also termed ‘casein kinase 2’). This association leads to increased phosphotransferase activity of CK2α, tested on calmodulin or specific peptides as substrate. We also show that bPrP counteracts the inhibition of calmodulin phosphorylation promoted by the regulatory β subunits of CK2. A truncated form of bPrP encompassing the C-terminal domain (residues 105–242) interacts with CK2 but does not affect its catalytic activity. The opposite is found with the N-terminal fragment of bPrP (residues 25–116), although the stimulation of catalysis is less efficient than with full-size bPrP. These results disclose the potential of the PrP to modulate the activity of CK2, a pleiotropic protein kinase that is particularly abundant in the brain.


2019 ◽  
Author(s):  
Hitendra Negi ◽  
Pothula Puroshotham Reddy ◽  
Chhaya Patole ◽  
Ranabir Das

ABSTRACTThe Baculoviridae family of viruses encode a viral Ubiquitin gene. Although the viral Ubiquitin is homologous to eukaryotic Ubiquitin (Ub), preservation of this gene in the viral genome indicates a unique function that is absent in the host eukaryotic Ub. We report the structural, biophysical, and biochemical properties of the viral Ubiquitin from Autographa Californica Multiple Nucleo-Polyhedrosis Virus (AcMNPV). The structure of viral Ubiquitin (vUb) differs from Ub in the packing of the central helix α1 to the beta-sheet of the β-grasp fold. Consequently, the stability of the fold is lower in vUb compared to Ub. However, the surface properties, ubiquitination activity, and the interaction with Ubiquitin binding domains are similar between vUb and Ub. Interestingly, vUb forms atypical polyubiquitin chain linked by lysine at the 54th position (K54). The K54-linked polyubiquitin chains are neither effectively cleaved by deubiquitinating enzymes, nor are they targeted by proteasomal degradation. We propose that modification of proteins with the viral Ubiquitin is a mechanism to counter the host antiviral responses.


2020 ◽  
Author(s):  
Ricardo Erazo Toscano ◽  
Remus Osan

1AbstractTraveling waves of electrical activity are ubiquitous in biological neuronal networks. Traveling waves in the brain are associated with sensory processing, phase coding, and sleep. The neuron and network parameters that determine traveling waves’ evolution are synaptic space constant, synaptic conductance, membrane time constant, and synaptic decay time constant. We used an abstract neuron model to investigate the propagation characteristics of traveling wave activity. We formulated a set of evolution equations based on the network connectivity parameters. We numerically investigated the stability of the traveling wave propagation with a series of perturbations with biological relevance.


2021 ◽  
Vol 13 ◽  
Author(s):  
Xiangyue Zhou ◽  
Youwei Li ◽  
Cameron Lenahan ◽  
Yibo Ou ◽  
Minghuan Wang ◽  
...  

Stroke is the destruction of brain function and structure, and is caused by either cerebrovascular obstruction or rupture. It is a disease associated with high mortality and disability worldwide. Brain edema after stroke is an important factor affecting neurologic function recovery. The glymphatic system is a recently discovered cerebrospinal fluid (CSF) transport system. Through the perivascular space and aquaporin 4 (AQP4) on astrocytes, it promotes the exchange of CSF and interstitial fluid (ISF), clears brain metabolic waste, and maintains the stability of the internal environment within the brain. Excessive accumulation of fluid in the brain tissue causes cerebral edema, but the glymphatic system plays an important role in the process of both intake and removal of fluid within the brain. The changes in the glymphatic system after stroke may be an important contributor to brain edema. Understanding and targeting the molecular mechanisms and the role of the glymphatic system in the formation and regression of brain edema after stroke could promote the exclusion of fluids in the brain tissue and promote the recovery of neurological function in stroke patients. In this review, we will discuss the physiology of the glymphatic system, as well as the related mechanisms and therapeutic targets involved in the formation of brain edema after stroke, which could provide a new direction for research against brain edema after stroke.


Sign in / Sign up

Export Citation Format

Share Document