Listeria monocytogenes strains encoding premature stop codons in inlA invade mice and guinea pig fetuses in orally dosed dams

2013 ◽  
Vol 62 (12) ◽  
pp. 1799-1806 ◽  
Author(s):  
Anne Holch ◽  
Hanne Ingmer ◽  
Tine Rask Licht ◽  
Lone Gram

Listeria monocytogenes is an important food-borne bacterial pathogen and listeriosis can result in abortions in pregnant women. The bacterium can colonize food-processing environments, where specific molecular subtypes can persist for years. The purpose of this study was to determine the virulence potential of a group of food-processing persistent L. monocytogenes strains encoding a premature stop codon in inlA (encoding internalin A) by using two orally dosed models, pregnant mice and pregnant guinea pigs. A food-processing persistent strain of L. monocytogenes invaded placentas (n = 58; 10 % positive) and fetuses (3 % positive) of pregnant mice (n = 9 animals per strain), similar to a genetically manipulated murinized strain, EGD-e InlA m* (n = 61; 3 and 2 %, respectively). In pregnant guinea pigs (n = 9 animals per bacterial strain), a maternofetal strain (from a human fetal clinical fatal case) was isolated from 34 % of placenta samples (n = 50), whereas both food-processing persistent strains were found in 5 % of placenta samples (n = 36 or 37). One of the food-processing persistent strains, N53-1, was found in up to 8 % of guinea pig fetal liver and brain samples, whereas the maternofetal control was found in 6 % of fetal tissue samples. As the food-processing persistent strains carry a premature stop codon in inlA but are invasive in orally dosed pregnant mice and guinea pigs, we hypothesize that listerial crossing of the placental barrier can occur by a mechanism that is independent of an interaction between E-cadherin and InlA.

2021 ◽  
Vol 9 (2) ◽  
pp. 376
Author(s):  
Fabrizia Guidi ◽  
Massimiliano Orsini ◽  
Alexandra Chiaverini ◽  
Marina Torresi ◽  
Patrizia Centorame ◽  
...  

A total of 66 Listeria monocytogenes (Lm) isolated from 2013 to 2018 in a small-scale meat processing plant and a dairy facility of Central Italy were studied. Whole Genome Sequencing and bioinformatics analysis were used to assess the genetic relationships between the strains and investigate persistence and virulence abilities. The biofilm forming-ability was assessed in vitro. Cluster analysis grouped the Lm from the meat plant into three main clusters: two of them, both belonging to CC9, persisted for years in the plant and one (CC121) was isolated in the last year of sampling. In the dairy facility, all the strains grouped in a CC2 four-year persistent cluster. All the studied strains carried multidrug efflux-pumps genetic determinants (sugE, mdrl, lde, norM, mepA). CC121 also harbored the Tn6188 specific for tolerance to Benzalkonium Chloride. Only CC9 and CC121 carried a Stress Survival Islet and presented high-level cadmium resistance genes (cadA1C1) carried by different plasmids. They showed a greater biofilm production when compared with CC2. All the CC2 carried a full-length inlA while CC9 and CC121 presented a Premature Stop Codon mutation correlated with less virulence. The hypo-virulent clones CC9 and CC121 appeared the most adapted to food-processing environments; however, even the hyper-virulent clone CC2 warningly persisted for a long time. The identification of the main mechanisms promoting Lm persistence in a specific food processing plant is important to provide recommendations to Food Business Operators (FBOs) in order to remove or reduce resident Lm.


2016 ◽  
Vol 79 (10) ◽  
pp. 1733-1740 ◽  
Author(s):  
A. VAN STELTEN ◽  
A. R. ROBERTS ◽  
C. S. MANUEL ◽  
K. K. NIGHTINGALE

ABSTRACT Listeria monocytogenes is a human foodborne pathogen that may cause an invasive disease known as listeriosis in susceptible individuals. Internalin A (InlA; encoded by inlA) is a virulence factor that facilitates crossing of host cell barriers by L. monocytogenes. At least 19 single nucleotide polymorphisms (SNPs) in inlA that result in a premature stop codon (PMSC) have been described worldwide. SNPs leading to a PMSC in inlA have been shown to be causally associated with attenuated virulence. L. monocytogenes pathogens carrying virulence-attenuating (VA) mutations in inlA have been commonly isolated from ready-to-eat (RTE) foods but rarely have been associated with human disease. This study was conducted to determine the prevalence of VA SNPs in inlA among L. monocytogenes from environments associated with RTE food production and handling. More than 700 L. monocytogenes isolates from RTE food processing plant (n = 409) and retail (n = 319) environments were screened for the presence of VA SNPs in inlA. Overall, 26.4% of isolates from RTE food processing plant and 32.6% of isolates from retail environments carried a VA mutation in inlA. Food contact surfaces sampled at retail establishments were significantly (P < 0.0001) more likely to be contaminated by a L. monocytogenes isolate carrying a VA mutation in inlA (56% of 55 isolates) compared with nonfood contact surfaces (28% of 264 isolates). Overall, a significant proportion of L. monocytogenes isolated from RTE food production and handling environments have reduced virulence. These data will be useful in the revision of current and the development of future risk assessments that incorporate strain-specific virulence parameters.


2008 ◽  
Vol 74 (21) ◽  
pp. 6570-6583 ◽  
Author(s):  
K. K. Nightingale ◽  
R. A. Ivy ◽  
A. J. Ho ◽  
E. D. Fortes ◽  
B. L. Njaa ◽  
...  

ABSTRACT Previous studies showed that a considerable proportion of Listeria monocytogenes isolates obtained from foods carry a premature stop codon (PMSC) mutation in inlA that leads to production of a truncated and secreted InlA. To further elucidate the role these mutations play in virulence of L. monocytogenes, we created isogenic mutants, including (i) natural isolates where an inlA PMSC was reverted to a wild-type inlA allele (without a PMSC) and (ii) natural isolates where a PMSC mutation was introduced into a wild-type inlA allele; isogenic mutant sets were constructed to represent two distinct inlA PMSC mutations. Phenotypical and transcriptional analysis data showed that inlA PMSC mutations do not have a polar effect on the downstream inlB. Isogenic and natural strains carrying an inlA PMSC showed significantly reduced invasion efficiencies in Caco-2 and HepG2 cell lines as well as reduced virulence in oral guinea pig infections. Guinea pigs were also orally infected with a natural strain carrying the most common inlA PMSC mutation (vaccinated group), followed by challenge with a fully virulent L. monocytogenes strain 15 days postvaccination to probe potentially immunizing effects of exposure to L. monocytogenes with inlA PMSC mutations. Vaccinated guinea pigs showed reduced bacterial loads in internal organs and improved weight gain postchallenge, indicating reduced severity of infections in guinea pigs exposed to natural strains with inlA PMSC mutations. Our data support that (i) inlA PMSC mutations are causally associated with attenuated virulence in mammalian hosts and (ii) naturally occurring virulence-attenuated L. monocytogenes strains commonly found in food confer protective immunity.


1953 ◽  
Vol 9 (1) ◽  
pp. 45-51 ◽  
Author(s):  
ROSA M. CAMPBELL ◽  
H. W. KOSTERLITZ

1. The protein content of liver cells is almost independent of the size of the animal (mice, cats and previous results on rats, Campbell & Kosterlitz [1949]), and varies with the amount of protein eaten. 2. As has already been shown for rats, the ribonucleic acid ('RNA') content of the liver cells of non-pregnant mice, guinea-pigs and cats varies directly with the protein content of the cells. For a given protein content the mouse and rat have more RNA than the guinea-pig and cat. 3. During pregnancy there is a rise of the deoxyribonucleic acid ('DNA') content of the livers and in the protein content of the liver cells of mice (and rats), but not of guinea-pigs. 4. An excess of RNA over that predicted from the protein content of the liver cell has previously been found for the rat during pregnancy, and ascribed to the action of a placental factor on the maternal liver. A similar excess of RNA has now been observed in the mouse and, to a less extent, in the guinea-pig. It appears to be absent in the cat. 5. Possible causes of some of these species differences are considered.


1920 ◽  
Vol 32 (5) ◽  
pp. 601-625 ◽  
Author(s):  
Hideyo Noguchi ◽  
I. J. Kligler

Injections into guinea pigs of the blood and the emulsions of liver and kidney obtained at autopsy from a fatal case of yellow fever in Merida induced in some of these animals, after a period of several days incubation, a rise of temperature which lasted 1, 2, or more days. When killed for examination at this febrile stage the animals invariably showed hemorrhagic areas of various size, sometimes few and sometimes numerous, in the lungs, and also, though less constantly, in the gastrointestinal mucosa, together with general hyperemia of the liver and kidneys. In a guinea pig (No. 6) inoculated with the liver emulsion of Case 1 there was a trace of jaundice on the 9th day. Injections of the blood or liver and kidney emulsions from such animals into normal guinea pigs reproduced the febrile reactions and the visceral lesions. The majority of the animals which were allowed to live and complete the course of the infection rapidly returned to normal (within several days). Examinations of these surviving guinea pigs after 2 weeks revealed the presence of rather old hemorrhagic foci in the lungs. In the course of further attempts to transfer the passage strain, a secondary infection by a bacillus of the paratyphoid group caused many deaths among the guinea pigs and resulted finally in the loss of the strain from Case 1. Most of the cultures made with the heart's blood taken at autopsy from Case 1 proved to be contaminated with a bacillus of the coli group. The contents of the apparently uncontaminated tubes were inoculated into guinea pigs, but the results were for the most part negative or vitiated by a secondary infection. Dark-field search for the leptospira with the autopsy materials was negative, although prolonged and thorough examination was not practicable at the time of these experiments. Our efforts were concentrated on obtaining positive animal transmission rather than on the time-consuming demonstration of the leptospira, which when unsuccessful does not necessarily exclude the presence of the organism in small numbers. Likewise, the dark-field work with the material from guinea pigs was confined to a brief examination and was omitted in many instances. Under these circumstances no leptospira was encountered in any of the material from Case 1. On the other hand, the results obtained with the specimens of blood from Case 2 were definitely positive, not only in the transmission of the disease directly, or indirectly by means of cultures, into guinea pigs, but also in the demonstration of the leptospira in the primary cultures and in the blood and organ emulsions of guinea pigs experimentally infected with such cultures. Definite positive direct transmissions were obtained with the specimens of blood drawn on the 2nd and 3rd days. No blood was taken on the 4th or 6th days. There were indications of abortive or mild leptospira infection in the guinea pigs inoculated with the blood taken on the 5th day. Regarding the inoculation of cultures from Case 2, it may be stated that only the cultures (leptospira +) made with the blood drawn on the 2nd day caused a definite fatal infection in guinea pigs. From this series a continuous passage in the guinea pig has been successfully accomplished. One of the guinea pigs (No. 48) inoculated with the culture 5 days old (leptospira +) made from the blood taken on the 3rd day presented typical symptoms, and a positive transfer from this to another animal (No. 98) was also made. Cultures of the blood drawn on the 5th and 7th days gave unsatisfactory results, owing to a secondary contamination. Leptospiras were detected in some of the culture tubes containing 2nd and 3rd day specimens of blood from Case 2; they were few in number and for the most part immotile, owing perhaps to some unfavorable cultural condition such as a fungus contamination. Charts 17, 18, and 19 give a summary of the experiments. See PDF for Structure


2010 ◽  
Vol 76 (10) ◽  
pp. 3391-3397 ◽  
Author(s):  
Anne Holch ◽  
Caroline Trebbien Gottlieb ◽  
Marianne Halberg Larsen ◽  
Hanne Ingmer ◽  
Lone Gram

ABSTRACT We determined mammalian cell invasion and virulence gene (inlA, inlB, and actA) sequences of Listeria monocytogenes strains belonging to a molecular subtype (RAPD 9) that often persists in Danish fish-processing plants. These strains invaded human placental trophoblasts less efficiently than other L. monocytogenes strains, including clinical strains, and they carry a premature stop codon in inlA. Eight of 15 strains, including the RAPD 9 and maternofetal strains, had a 105-nucleotide deletion in actA that did not affect cell-to-cell spread in mouse fibroblasts. The RAPD 9 strains may still be regarded as of low virulence with respect to human listeriosis.


2006 ◽  
Vol 74 (2) ◽  
pp. 876-886 ◽  
Author(s):  
M. R. Garner ◽  
B. L. Njaa ◽  
M. Wiedmann ◽  
K. J. Boor

ABSTRACT Contributions of the alternative sigma factor σB to Listeria monocytogenes infection were investigated using strains bearing null mutations in sigB, prfA, or inlA or in selected inlA or prfA promoter regions. The ΔP4 inlA strain, which has a deletion in the σB-dependent P4 inlA promoter, and the ΔsigB strain had significantly reduced invasion efficiencies relative to that of the wild-type strain in the Caco-2 human colorectal epithelial cell line, while the invasion efficiency of a strain bearing a deletion in the partially σB dependent P2 prfA promoter region did not differ from that of the wild type. The virulence of the ΔsigB and ΔP4 inlA strains was attenuated in intragastrically inoculated guinea pigs, with the ΔsigB strain showing greater attenuation, while the virulence capacity of the ΔP2 prfA strain was similar to that of the wild-type strain, suggesting that attenuation of virulence due to the ΔsigB mutation does not result from loss of σB-dependent prfA transcription. Our results show that σB-dependent activation of inlA is important for cell invasion and gastrointestinal infection and suggest that σB-regulated genes in addition to inlA appear to contribute to gastrointestinal infection. Interestingly, the virulence of the ΔsigB strain was not attenuated in intravenously infected guinea pigs. We conclude that (i) L. monocytogenes σB plays a critical role in invasion of human host cells, (ii) σB-mediated contributions to invasion are, in part, due to direct effects on inlA transcription but not on prfA transcription, and (iii) σB plays a critical role during the gastrointestinal stage of listeriosis in the guinea pig but is not important for systemic spread of the organism.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Nicholas F. Noriea ◽  
Tina R. Clark ◽  
Ted Hackstadt

ABSTRACTStrains ofRickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF), differ dramatically in virulence despite >99% genetic homology. Spotted fever group (SFG) rickettsiae produce two immunodominant outer membrane proteins, rickettsial OmpA (rOmpA) and rOmpB, which are conserved throughout the SFG and thought to be fundamental to pathogenesis. rOmpA is present in all virulent strains ofR. rickettsiibut is not produced in the only documented avirulent strain, Iowa, due to a premature stop codon. Here we report the creation of an isogenicompAmutant in the highly virulent strain Sheila Smith by insertion of intronic RNA to create a premature stop codon 312 bp downstream of the 6,747-bp open reading frame initiation site (int312). Targeted insertion was accomplished using an LtrA group II intron retrohoming system. Growth and entry rates of Sheila SmithompA::int312 in Vero cells remained comparable to those of the wild type. Virulence was assessed in a guinea pig model by challenge with 100 PFU of eitherompA::int312 Sheila Smith or the wild type, but no significant difference in either fever peak (40.5°C) or duration (8 days) were shown between the wild type and the knockout. The ability to disrupt genes in a site-specific manner using an LtrA group II intron system provides an important new tool for evaluation of potential virulence determinants in rickettsial disease research.IMPORTANCER. rickettsiirOmpA is an immunodominant outer membrane autotransporter conserved in the spotted fever group. Previous studies and genomic comparisons suggest that rOmpA is involved in adhesion and may be critical for virulence. Little information is available for rickettsial virulence factors in an isogenic background, as limited systems for targeted gene disruption are currently available. Here we describe the creation of an rOmpA knockout by insertion of a premature stop codon into the 5′ end of the open reading frame using a group II intron system. An isogenic rOmpA knockout mutation in the highly virulent Sheila Smith strain did not cause attenuation in a guinea pig model of infection, and no altered phenotype was observed in cell culture. We conclude that rOmpA is not critical for virulence in a guinea pig model but may play a role in survival or transmission from the tick vector.


Author(s):  
Mariana Almeida Iglesias ◽  
Isabela Schneid Kroning ◽  
Tassiana Ramires ◽  
Carlos Eduardo Cunha ◽  
Gustavo Marçal S. G. Moreira ◽  
...  

The goals of this study were to evaluate the persistence and the virulence potential of Listeria monocytogenes isolated from beef carcasses obtained in processing facilities in the Southern region of Rio Grande do Sul, Brazil, based on pulsed field gel electrophoresis (PFGE), invasion ability in human colorectal carcinoma cells (HCT-116), InlA expression by western blot (WB) and identification of mutation points in the inlA . PFGE profiles demonstrated that L. monocytogenes isolates were grouped based on their previously identified lineages and serogroups (lineage I: serogroups IIb, n = 2, and IVb, n = 5; lineage II, serogroup IIc, n = 5), isolates with indistinguishable genetic profiles by this method were obtained from different slaughterhouses and sampling steps, with up to 3-year interval. Seven isolates showed high invasion ability (2.4 to 7.4%, lineage I, n = 6, lineage II, n = 1) in HCT and expressed InlA. Five isolates showed low cell invasion ability (0.6 to 1.4%, lineage I, n = 1, lineage II, n = 4) and did not express InlA, and two of them (lineage II, serogroup IIc) presented mutations in inlA leading to a premature stop codon (PMSC) type 19, at position 326 (GAA → TAA). The results demonstrated that most of L. monocytogenes isolates from Lineage I expressed InlA and were the most invasive in HCT indicating their high virulence potential, while most isolates from Lineage II showed attenuated invasion due to non-expression of InlA and the presence of PMSC type 19 in inlA . The obtained results demonstrated that L. monocytogenes with indistinguishable PFGE profiles can be persisting or being reintroduced in beef processing facilities in the studied region and differences on their virulence potential based on their lineages and serogroups.


2017 ◽  
Vol 85 (11) ◽  
Author(s):  
Mylène M. Maury ◽  
Viviane Chenal-Francisque ◽  
Hélène Bracq-Dieye ◽  
Lei Han ◽  
Alexandre Leclercq ◽  
...  

ABSTRACT The pathogenesis of Listeria monocytogenes depends on the ability of this bacterium to escape from the phagosome of the host cells via the action of the pore-forming toxin listeriolysin O (LLO). Expression of the LLO-encoding gene (hly) requires the transcriptional activator PrfA, and both hly and prfA genes are essential for L. monocytogenes virulence. Here, we used the hemolytic activity of LLO as a phenotypic marker to screen for spontaneous virulence-attenuating mutations in L. monocytogenes. Sixty nonhemolytic isolates were identified among a collection of 57,820 confirmed L. monocytogenes strains isolated from a variety of sources (0.1%). In most cases (56/60; 93.3%), the nonhemolytic phenotype resulted from nonsense, missense, or frameshift mutations in prfA. Five strains carried hly mutations leading to a single amino acid substitution (G299V) or a premature stop codon causing strong virulence attenuation in mice. In one strain, both hly and gshF (encoding a glutathione synthase required for full PrfA activity) were missing due to genomic rearrangements likely caused by a transposable element. The PrfA/LLO loss-of-function (PrfA−/LLO−) mutants belonged to phylogenetically diverse clades of L. monocytogenes, and most were identified among nonclinical strains (57/60). Consistent with the rare occurrence of loss-of-virulence mutations, we show that prfA and hly are under purifying selection. Although occurring at a low frequency, PrfA−/LLO− mutational events in L. monocytogenes lead to niche restriction and open an evolutionary path for obligate saprophytism in this facultative intracellular pathogen.


Sign in / Sign up

Export Citation Format

Share Document