scholarly journals Characterization of the growth dynamics and biofilm formation of Staphylococcus epidermidis strains isolated from contaminated platelet units

2014 ◽  
Vol 63 (6) ◽  
pp. 884-891 ◽  
Author(s):  
Hamza Ali ◽  
Valerie S. Greco-Stewart ◽  
Michael R. Jacobs ◽  
Roslyn A. Yomtovian ◽  
Ineke G. H. Rood ◽  
...  

Bacterial contamination of platelet concentrates (PCs) poses the highest transfusion-associated infectious risk, with Staphylococcus epidermidis being a predominant contaminant. Herein, the growth dynamics of 20 S. epidermidis strains in PCs and regular media were characterized. Strains were categorized as fast (short lag phase) or slow (long lag phase) growers in PCs. All strains were evaluated for the presence of the biofilm-associated icaAD genes by PCR, their capability to produce extracellular polysaccharide (slime) on Congo red agar plates and their ability to form surface-attached aggregates (biofilms) in glucose-supplemented trypticase soy broth (TSBg) using a crystal violet staining assay. A subset of four strains (two slow growers and two fast growers) was further examined for the ability for biofilm formation in PCs. Two of these strains carried the icAD genes, formed slime and produced biofilms in TSBg and PCs, while the other two strains, which did not carry icaAD, did not produce slime or form biofilms in TSBg. Although the two ica-negative slime-negative strains did not form biofilms in media, they displayed a biofilm-positive phenotype in PCs. Although all four strains formed biofilms in PCs, the two slow growers formed significantly more biofilms than the fast growers. Furthermore, growth experiments of the two ica-positive strains in plasma-conditioned platelet bags containing TSBg revealed that a slow grower isolate was more likely to escape culture-based screening than a fast grower strain. Therefore, this study provides novel evidence that links S. epidermidis biofilm formation with slow growth in PCs and suggests that slow-growing biofilm-positive S. epidermidis would be more likely to be missed with automate culture.

2001 ◽  
Vol 69 (6) ◽  
pp. 4079-4085 ◽  
Author(s):  
Sarah E. Cramton ◽  
Martina Ulrich ◽  
Friedrich Götz ◽  
Gerd Döring

ABSTRACT Products of the intercellular adhesion (ica) operon in Staphylococcus aureus and Staphylococcus epidermidis synthesize a linear β-1,6-linked glucosaminylglycan. This extracellular polysaccharide mediates bacterial cell-cell adhesion and is required for biofilm formation, which is thought to increase the virulence of both pathogens in association with prosthetic biomedical implants. The environmental signal(s) that triggers ica gene product and polysaccharide expression is unknown. Here we demonstrate that anaerobic in vitro growth conditions lead to increased polysaccharide expression in both S. aureus and S. epidermidis, although the regulation is less stringent inS. epidermidis. Anaerobiosis also dramatically stimulates ica-specific mRNA expression inica- and polysaccharide-positive strains of both S. aureus and S. epidermidis.These data suggest a mechanism whereby ica gene expression and polysaccharide production may act as a virulence factor in an anaerobic environment in vivo.


2001 ◽  
Vol 69 (12) ◽  
pp. 7933-7936 ◽  
Author(s):  
Stefanie Kies ◽  
Michael Otto ◽  
Cuong Vuong ◽  
Friedrich Götz

ABSTRACT The role of the alternative sigma factor ςB inStaphylococcus epidermidis was investigated by the construction, complementation, and characterization of asigB deletion mutant. Electrophoretic analyses confirmed a profound influence of ςB on the expression of exoproteins and cytoplasmic proteins. Detailed investigation revealed reduced lipase and enhanced protease activity in the ςB mutant. Furthermore, no significant influence of ςB on heterologous biofilm formation or on the activity of the global regulator agr was detected.


2020 ◽  
Vol 8 (7) ◽  
pp. 1042
Author(s):  
Yannik Schneider ◽  
Marte Jenssen ◽  
Johan Isaksson ◽  
Kine Østnes Hansen ◽  
Jeanette Hammer Andersen ◽  
...  

Siderophores are compounds with high affinity for ferric iron. Bacteria produce these compounds to acquire iron in iron-limiting conditions. Iron is one of the most abundant metals on earth, and its presence is necessary for many vital life processes. Bacteria from the genus Serratia contribute to the iron respiration in their environments, and previously several siderophores have been isolated from this genus. As part of our ongoing search for medicinally relevant compounds produced by marine microbes, a co-culture of a Shewanella sp. isolate and a Serratia sp. isolate, grown in iron-limited conditions, was investigated, and the rare siderophore serratiochelin A (1) was isolated with high yields. Compound 1 has previously been isolated exclusively from Serratia sp., and to our knowledge, there is no bioactivity data available for this siderophore to date. During the isolation process, we observed the degradation product serratiochelin C (2) after exposure to formic acid. Both 1 and 2 were verified by 1-D and 2-D NMR and high-resolution MS/MS. Here, we present the isolation of 1 from an iron-depleted co-culture of Shewanella sp. and Serratia sp., its proposed mechanism of degradation into 2, and the chemical and biological characterization of both compounds. The effects of 1 and 2 on eukaryotic and prokaryotic cells were evaluated, as well as their effect on biofilm formation by Staphylococcus epidermidis. While 2 did not show bioactivity in the given assays, 1 inhibited the growth of the eukaryotic cells and Staphylococcus aureus.


Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 649
Author(s):  
Débora C. Coraça-Huber ◽  
Lisa Kreidl ◽  
Stephan Steixner ◽  
Maximilian Hinz ◽  
Dietmar Dammerer ◽  
...  

Objectives: For a better understanding of the mechanisms involved in biofilm formation, we performed a broad identification and characterization of the strains affecting implants by evaluating the morphology of biofilms formed in vitro in correlation with tests of the strains’ antibiotic susceptibility in planktonic form. The ability of the strains to form biofilms in vitro was evaluated by means of colony forming units counting, metabolic activity tests of biofilm cells, and scanning electron microscopy. Methods: A total of 140 strains were isolated from patients with orthopedic implant-related infections during the period of 2015 to 2018. The identification of the isolates was carried out through microbiological cultures and confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antibiotic susceptibility rates of the isolates were accessed according to EUCAST (European Committee on Antimicrobial Susceptibility Testing). The ability of all isolates to form biofilms in vitro was evaluated by counting the colony forming units, by measuring the metabolic activity of biofilm cells, and by analyzing the morphology of the formed biofilms using scanning electron microscopy. Results: From all the isolates, 41.84% (62 strains) were Staphylococcus epidermidis and 15.60% (22 strains) were Staphylococcus aureus. A significant difference in the capacity of biofilm formation was observed among the isolates. When correlating the biofilm forming capacity of the isolates to their antibiotic susceptibility rates, we observed that not all strains that were classified as resistant were biofilm producers in vitro. In other words, bacteria that are not good biofilm formers can show increased tolerance to multiple antibiotic substances. Conclusion: From 2015 until 2018, Staphylococcus epidermidis was the strain that caused most of the orthopedic implant-related infections in our hospital. Not all strains causing infection in orthopedic implants are able to form biofilms under in vitro conditions. Differences were observed in the number of cells and morphology of the biofilms. In addition, antibiotic resistance is not directly related to the capacity of the strains to form biofilms in vitro. Further studies should consider the use of in vitro culture conditions that better reproduce the joint environment and the growth of biofilms in humans.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 546
Author(s):  
Pilar Sabuquillo ◽  
Jaime Cubero

Xanthomonasarboricola pv. pruni (Xap) causes bacterial spot of stone fruit and almond, an important plant disease with a high economic impact. Biofilm formation is one of the mechanisms that microbial communities use to adapt to environmental changes and to survive and colonize plants. Herein, biofilm formation by Xap was analyzed on abiotic and biotic surfaces using different microscopy techniques which allowed characterization of the different biofilm stages compared to the planktonic condition. All Xap strains assayed were able to form real biofilms creating organized structures comprised by viable cells. Xap in biofilms differentiated from free-living bacteria forming complex matrix-encased multicellular structures which become surrounded by a network of extracellular polymeric substances (EPS). Moreover, nutrient content of the environment and bacterial growth have been shown as key factors for biofilm formation and its development. Besides, this is the first work where different cell structures involved in bacterial attachment and aggregation have been identified during Xap biofilm progression. Our findings provide insights regarding different aspects of the biofilm formation of Xap which improve our understanding of the bacterial infection process occurred in Prunus spp and that may help in future disease control approaches.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diogo Martins ◽  
Michael A. DiCandia ◽  
Aristides L. Mendes ◽  
Daniela Wetzel ◽  
Shonna M. McBride ◽  
...  

AbstractBacteria that reside in the gastrointestinal tract of healthy humans are essential for our health, sustenance and well-being. About 50–60% of those bacteria have the ability to produce resilient spores that are important for the life cycle in the gut and for host-to-host transmission. A genomic signature for sporulation in the human intestine was recently described, which spans both commensals and pathogens such as Clostridioides difficile and contains several genes of unknown function. We report on the characterization of a signature gene, CD25890, which, as we show is involved in the control of sporulation initiation in C. difficile under certain nutritional conditions. Spo0A is the main regulatory protein controlling entry into sporulation and we show that an in-frame deletion of CD25890 results in increased expression of spo0A per cell and increased sporulation. The effect of CD25890 on spo0A is likely indirect and mediated through repression of the sinRR´ operon. Deletion of the CD25890 gene, however, does not alter the expression of the genes coding for the cytotoxins or the genes involved in biofilm formation. Our results suggest that CD25890 acts to modulate sporulation in response to the nutrients present in the environment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Poushali Chakraborty ◽  
Sapna Bajeli ◽  
Deepak Kaushal ◽  
Bishan Dass Radotra ◽  
Ashwani Kumar

AbstractTuberculosis is a chronic disease that displays several features commonly associated with biofilm-associated infections: immune system evasion, antibiotic treatment failures, and recurrence of infection. However, although Mycobacterium tuberculosis (Mtb) can form cellulose-containing biofilms in vitro, it remains unclear whether biofilms are formed during infection in vivo. Here, we demonstrate the formation of Mtb biofilms in animal models of infection and in patients, and that biofilm formation can contribute to drug tolerance. First, we show that cellulose is also a structural component of the extracellular matrix of in vitro biofilms of fast and slow-growing nontuberculous mycobacteria. Then, we use cellulose as a biomarker to detect Mtb biofilms in the lungs of experimentally infected mice and non-human primates, as well as in lung tissue sections obtained from patients with tuberculosis. Mtb strains defective in biofilm formation are attenuated for survival in mice, suggesting that biofilms protect bacilli from the host immune system. Furthermore, the administration of nebulized cellulase enhances the antimycobacterial activity of isoniazid and rifampicin in infected mice, supporting a role for biofilms in phenotypic drug tolerance. Our findings thus indicate that Mtb biofilms are relevant to human tuberculosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aleksandr Ilinov ◽  
Akihito Nishiyama ◽  
Hiroki Namba ◽  
Yukari Fukushima ◽  
Hayato Takihara ◽  
...  

AbstractDNA is basically an intracellular molecule that stores genetic information and carries instructions for growth and reproduction in all cellular organisms. However, in some bacteria, DNA has additional roles outside the cells as extracellular DNA (eDNA), which is an essential component of biofilm formation and hence antibiotic tolerance. Mycobacteria include life-threating human pathogens, most of which are slow growers. However, little is known about the nature of pathogenic mycobacteria’s eDNA. Here we found that eDNA is present in slow-growing mycobacterial pathogens, such as Mycobacterium tuberculosis, M. intracellulare, and M. avium at exponential growth phase. In contrast, eDNA is little in all tested rapid-growing mycobacteria. The physiological impact of disrupted eDNA on slow-growing mycobacteria include reduced pellicle formation, floating biofilm, and enhanced susceptibility to isoniazid and amikacin. Isolation and sequencing of eDNA revealed that it is identical to the genomic DNA in M. tuberculosis and M. intracellulare. In contrast, accumulation of phage DNA in eDNA of M. avium, suggests that the DNA released differs among mycobacterial species. Our data show important functions of eDNA necessary for biofilm formation and drug tolerance in slow-growing mycobacteria.


Sign in / Sign up

Export Citation Format

Share Document