scholarly journals A Helicobacter hepaticus catalase mutant is hypersensitive to oxidative stress and suffers increased DNA damage

2007 ◽  
Vol 56 (4) ◽  
pp. 557-562 ◽  
Author(s):  
Yang Hong ◽  
Ge Wang ◽  
Robert J. Maier

Catalase (KatA) is known to play an important role in oxidative stress resistance in many bacterial species and a homologue exists in Helicobacter hepaticus, a member of the enterohepatic Helicobacter species. Here, a katA mutant was constructed by insertional mutagenesis and its oxidative stress phenotype was investigated. Catalase activity was readily detected [196 units (mg protein crude cell extract)−1] in the wild-type, whereas the mutant strain was deficient in, but not devoid of, activity. In contrast, Helicobacter pylori katA strains lack detectable catalase activity and wild-type H. pylori generally contains higher specific activity than H. hepaticus. Wild-type H. hepaticus cells tolerated 6 % O2 for growth, whilst the katA mutant could not survive at this oxygen level. Even at the optimal O2 level, the growth of the H. hepaticus katA strain was severely inhibited, which is also in contrast to H. pylori katA strains. Wild-type H. hepaticus cells withstood exposure to 100 mM H2O2 but the katA mutant cells were killed by the same treatment. Wild-type cells suffered no significant DNA damage by H2O2 treatment (100 mM for 6 min), whilst the same treatment resulted in severe DNA fragmentation in the katA mutant. Thus H. hepaticus KatA plays an important role as an antioxidant protein.

2006 ◽  
Vol 74 (12) ◽  
pp. 6839-6846 ◽  
Author(s):  
Ge Wang ◽  
Yang Hong ◽  
Adriana Olczak ◽  
Susan E. Maier ◽  
Robert J. Maier

ABSTRACT Neutrophil-activating protein (NapA) has been well documented to play roles in human neutrophil recruitment and in stimulating host cell production of reactive oxygen intermediates (ROI). A separate role for NapA in combating oxidative stress within H. pylori was implied by studies of various H. pylori mutant strains. Here, physiological analysis of a napA strain was the approach used to assess the iron-sequestering and stress resistance roles of NapA, its role in preventing oxidative DNA damage, and its importance to mouse colonization. The napA strain was more sensitive to oxidative stress reagents and to oxygen, and it contained fourfold more intracellular free iron and more damaged DNA than the parent strain. Pure, iron-loaded NapA bound to DNA, but native NapA did not, presumably linking iron levels sensed by NapA to DNA damage protection. Despite its in vitro phenotype of sensitivity to oxidative stress, the napA strain showed normal (like that of the wild type) mouse colonization efficiency in the conventional in vivo assay. By use of a modified mouse inoculation protocol whereby nonviable H. pylori is first inoculated into mice, followed by (live) bacterial strain administration, an in vivo role for NapA in colonization efficiency could be demonstrated. NapA is the critical component responsible for inducing host-mediated ROI production, thus inhibiting colonization by the napA strain. An animal colonization experiment with a mixed-strain infection protocol further demonstrated that the napA strain has significantly decreased ability to survive when competing with the wild type. H. pylori NapA has unique and separate roles in gastric pathogenesis.


2008 ◽  
Vol 76 (7) ◽  
pp. 3037-3044 ◽  
Author(s):  
Navasona Krishnan ◽  
Alan R. Doster ◽  
Gerald E. Duhamel ◽  
Donald F. Becker

ABSTRACT Helicobacter hepaticus is a gram-negative, spiral-shaped microaerophilic bacterium associated with chronic intestinal infection leading to hepatitis and colonic and hepatic carcinomas in susceptible strains of mice. In the closely related human pathogen Helicobacter pylori, l-proline is a preferred respiratory substrate and is found at significantly high levels in the gastric juice of infected patients. A previous study of the proline catabolic PutA flavoenzymes from H. pylori and H. hepaticus revealed that Helicobacter PutA generates reactive oxygen species during proline oxidation by transferring electrons from reduced flavin to molecular oxygen. We further explored the preference for proline as a respiratory substrate and the potential impact of proline metabolism on the redox environment in Helicobacter species during host infection by disrupting the putA gene in H. hepaticus. The resulting putA knockout mutant strain was characterized by oxidative stress analysis and mouse infection studies. The putA mutant strain of H. hepaticus exhibited increased proline levels and resistance to oxidative stress relative to that of the wild-type strain, consistent with proline's role as an antioxidant. The significant increase in stress resistance was attributed to higher proline content, as no upregulation of antioxidant genes was observed for the putA mutant strain. The wild-type and putA mutant H. hepaticus strains displayed similar levels of infection in mice, but in mice challenged with the putA mutant strain, significantly reduced inflammation was observed, suggesting a role for proline metabolism in H. hepaticus pathogenicity in vivo.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 439-446 ◽  
Author(s):  
Masaaki Onda ◽  
Katsuhiro Hanada ◽  
Hirokazu Kawachi ◽  
Hideo Ikeda

Abstract DNA damage by oxidative stress is one of the causes of mutagenesis. However, whether or not DNA damage induces illegitimate recombination has not been determined. To study the effect of oxidative stress on illegitimate recombination, we examined the frequency of λbio transducing phage in the presence of hydrogen peroxide and found that this reagent enhances illegitimate recombination. To clarify the types of illegitimate recombination, we examined the effect of mutations in mutM and related genes on the process. The frequency of λbio transducing phage was 5- to 12-fold higher in the mutM mutant than in the wild type, while the frequency in the mutY and mutT mutants was comparable to that of the wild type. Because 7,8-dihydro-8-oxoguanine (8-oxoG) and formamido pyrimidine (Fapy) lesions can be removed from DNA by MutM protein, these lesions are thought to induce illegitimate recombination. Analysis of recombination junctions showed that the recombination at Hotspot I accounts for 22 or 4% of total λbio transducing phages in the wild type or in the mutM mutant, respectively. The preferential increase of recombination at nonhotspot sites with hydrogen peroxide in the mutM mutant was discussed on the basis of a new model, in which 8-oxoG and/or Fapy residues may introduce double-strand breaks into DNA.


2007 ◽  
Vol 190 (4) ◽  
pp. 1209-1218 ◽  
Author(s):  
Raquel Paes da Rocha ◽  
Apuã César de Miranda Paquola ◽  
Marilis do Valle Marques ◽  
Carlos Frederico Martins Menck ◽  
Rodrigo S. Galhardo

ABSTRACT The SOS regulon is a paradigm of bacterial responses to DNA damage. A wide variety of bacterial species possess homologs of lexA and recA, the central players in the regulation of the SOS circuit. Nevertheless, the genes actually regulated by the SOS have been determined only experimentally in a few bacterial species. In this work, we describe 37 genes regulated in a LexA-dependent manner in the alphaproteobacterium Caulobacter crescentus. In agreement with previous results, we have found that the direct repeat GTTCN7GTTC is the SOS operator of C. crescentus, which was confirmed by site-directed mutagenesis studies of the imuA promoter. Several potential promoter regions containing the SOS operator were identified in the genome, and the expression of the corresponding genes was analyzed for both the wild type and the lexA strain, demonstrating that the vast majority of these genes are indeed SOS regulated. Interestingly, many of these genes encode proteins with unknown functions, revealing the potential of this approach for the discovery of novel genes involved in cellular responses to DNA damage in prokaryotes, and illustrating the diversity of SOS-regulated genes among different bacterial species.


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Rui Yao ◽  
Pei Zhou ◽  
Chengjin Wu ◽  
Liming Liu ◽  
Jing Wu

ABSTRACT In Saccharomyces cerevisiae, Y family DNA polymerase Rev1 is involved in the repair of DNA damage by translesion DNA synthesis (TLS). In the current study, to elucidate the role of Rev1 in oxidative stress-induced DNA damage in S. cerevisiae, REV1 was deleted and overexpressed; transcriptome analysis of these mutants along with the wild-type strain was performed to screen potential genes that could be associated with REV1 during response to DNA damage. When the yeast cells were treated with 2 mM H2O2, the deletion of REV1 resulted in a 1.5- and 2.8-fold decrease in the survival rate and mutation frequency, respectively, whereas overexpression of REV1 increased the survival rate and mutation frequency by 1.1- and 2.9-fold, respectively, compared to the survival rate and mutation frequency of the wild-type strain. Transcriptome and phenotypic analyses identified that Sml1 aggravated oxidative stress in the yeast cells by inhibiting the activity of Rev1. This inhibition was due to the physical interaction between the BRCA1 C terminus (BRCT) domain of Rev1 and amino acid residues 36 to 70 of Sml1; the cell survival rate and mutation frequency increased by 1.8- and 3.1-fold, respectively, when this interaction was blocked. We also found that Sml1 inhibited Rev1 phosphorylation under oxidative stress and that deletion of SML1 increased the phosphorylation of Rev1 by 46%, whereas overexpression of SML1 reduced phosphorylation of Rev1. Overall, these findings demonstrate that Sml1 could be a novel regulator that mediates Rev1 dephosphorylation to inhibit its activity during oxidative stress. IMPORTANCE Rev1 was critical for cell growth in S. cerevisiae, and the deletion of REV1 caused a severe growth defect in cells exposed to oxidative stress (2 mM H2O2). Furthermore, we found that Sml1 physically interacted with Rev1 and inhibited Rev1 phosphorylation, thereby inhibiting Rev1 DNA antioxidant activity. These findings indicate that Sml1 could be a novel regulator for Rev1 in response to DNA damage by oxidative stress.


1990 ◽  
Vol 36 (6) ◽  
pp. 449-451 ◽  
Author(s):  
Pamela A. Vercellone ◽  
Robert M. Smibert ◽  
Noel R. Krieg

A comparison of Campylobacter jejuni VPI strain H840 (ATCC 29428), which can grow at O2 levels up to 15%, with variant strain MC711-01 (which can grown at O2 levels up to 21–26%) indicated that the specific activity of catalase in crude cell extracts was higher in the variant by a factor of 1.6 to 2.5, depending on cultural conditions. Smaller differences occurred with superoxide dismutase activity, while peroxidase activities were invariably lower in the variant strain. The variant strain was much more resistant than the wild type to the bactericidal effects of H2O2. The results suggest that catalase activity might be one of the factors associated with the greater tolerance of O2 by the variant strain. However, both strains became more susceptible to H2O2 when cultures were initially grown at 6% O2 and then shifted to 21% O2; thus the role of catalase in the oxygen tolerance of C. jejuni is probably minor. Key words: Campylobacter jejuni, catalase, oxygen tolerance.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 387-387
Author(s):  
Ghada M Kunter ◽  
Jill Woloszynek ◽  
Daniel C. Link

Abstract Abstract 387 A shared feature of many bone marrow failure syndromes is their propensity to develop myelodysplasia (MDS) or acute myeloid leukemia (AML). The molecular mechanisms that underlie this susceptibility are largely unknown. Severe congenital neutropenia (SCN) is an inherited disorder of granulopoiesis that is associated with a marked increased risk of developing MDS/AML. Somatic mutations of CSF3R, encoding the G-CSF receptor (G-CSFR), that truncate the carboxy-terminal tail are associated with the development of MDS/AML in SCN. Transgenic mice carrying a ‘knock-in’ mutation of their Csf3r (termed d715 G-CSFR) reproducing a mutation found in a patient with SCN have normal basal granulopoiesis but an exaggerated neutrophil response to G-CSF treatment. We previously reported that the d715 G-CSFR is able to cooperate with the PML-RARƒÑ oncogene to induce AML in mice. Herein, we summarize data supporting the hypothesis that alterations in the bone marrow microenvironment induced by G-CSF contribute to oxidative DNA damage in hematopoietic stem/progenitors cells (HSPCs) and possibly leukemic transformation. We previously showed that G-CSF treatment is associated with a marked loss of osteoblasts in the bone marrow, thereby potentially disrupting the osteoblast stem cell niche (Semerad, Blood 2005). Of note, patients with SCN chronically treated with G-CSF are prone to develop osteopenia, suggesting that osteoblast suppression by G-CSF also may occur in humans. We first asked whether the d715 G-CSFR was able to mediate this response. Wild-type or d715 G-CSFR were treated with G-CSF for 1–7 days and osteoblast activity in the bone marrow measured by expression of CXCL12 and osteocalcin. Consistent with previous reports, a decrease in osteocalcin and CXCL12 was not apparent until after 3 days of G-CSF treatment and reached a maximum after 7 days. Surprisingly, the magnitude of osteoblast suppression was greater in d715 G-CSFR compared with wild-type mice. The fold-decrease in osteocalcin mRNA from baseline in wild-type mice was 147 ± 70.1 versus 1,513 ± 1091 in d715 G-CSFR mice (p < 0.001). Likewise, a greater fold-decrease in CXCL12 mRNA was observed. We next assessed oxidative stress in c-KIT+ Sca+ lineage− (KSL) progenitors after G-CSF treatment. In both wild-type and d715 G-CSFR KSL cells no increase in reactive oxygen species (ROS) was observed at baseline or 12 hours after a single dose of G-CSF. However, after 7 days of G-CSF, a significant increase (3.4 ± 0.1 fold; p = 0.009) in ROS was observed in d715 G-CSFR but not wild-type KSL cells. To determine whether oxidative stress contributed to DNA damage, histone H2AX phosphorylation (pH2AX) was measured by flow cytometry. No increase in pH2AX was observed after short-term (less than 24 hour) G-CSF treatment. However, a modest but significant (1.9 ± 0.1 fold; p = 0.0007) increase in pH2AX was observed in d715 G-CSFR but not wild-type KSL cells after 7 days of G-CSF. To determine whether increased oxidative stress was casually linked to DNA damage, we co-administered the antioxidant N-acetyl cysteine (NAC) during G-CSF treatment. As expected, induction of ROS in KSL cells was markedly suppressed by NAC administration. Importantly, the increase in pH2AX levels in d715 G-CSFR KSL cells induced by G-CSF was completely blocked by NAC administration. Finally, to determine whether alterations in the bone marrow microenvironment, specifically decreased CXCL12 expression, contributed to DNA damage, we treated mice with AMD3100, a specific antagonist of CXCR4 (the major receptor for CXCL12). Treatment of wild-type or d715 G-CSFR mice with a single dose of G-CSF (3 hour time point) or with AMD3100 alone did not induce H2AXp. However, co-administration of AMD3100 with a single dose of G-CSF induced modest but significant H2AXp in d715 G-CSFR KSL cells (5.74 ± 1.06 fold; P<0.001). Collectively, these data suggest a model in which alterations in the bone marrow microenvironment induced by G-CSF may contribute to genetic instability in HSPCs and ultimately leukemic transformation. The mutant CSF3R may contribute to leukemogenesis through both increased ROS production in HSPCs and increased suppression of osteoblasts. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 47 (3) ◽  
pp. 222-228 ◽  
Author(s):  
Anne J Anderson ◽  
Charles D Miller

Peracetic acid is used as a sterilant in several industrial settings. Cells of a plant-colonizing bacterium, Pseudomonas putida in liquid suspension, were more sensitive to killing by peracetic acid when they lacked a major catalase activity, catalase A. Low doses of peracetic acid induced promoter activity of the gene encoding catalase A and increased total catalase specific activity in cell extracts. Microbes present in native agricultural soils rapidly degraded the active oxygen species present in peracetic acid. The simultaneous release of oxygen was consistent with a role for catalase in degrading the hydrogen peroxide that is part of the peracetic acid-equilibrium mixture. Amendment of sterilized soils with wild-type P. putida restored the rate of degradation of peracetic acid to a higher level than was observed in the soils amended with the catalase A-deficient mutant. The association of the bacteria with the plant roots resulted in protection of the wild-type as well as the catalase-deficient mutant from killing by peracetic acid. No differential recovery of the wild-type and catalase A mutant of P. putida was observed from roots after the growth matrix containing the plants was flushed with peracetic acid.Key words: Pseudomonas putida (Pp), activated oxygen species (AOS), hydrogen peroxide, luciferase, colonization.


2007 ◽  
Vol 189 (24) ◽  
pp. 8914-8921 ◽  
Author(s):  
Anna Skoglund ◽  
Britta Björkholm ◽  
Christina Nilsson ◽  
Anders F. Andersson ◽  
Cecilia Jernberg ◽  
...  

ABSTRACT A large number of genes encoding restriction-modification (R-M) systems are found in the genome of the human pathogen Helicobacter pylori. R-M genes comprise approximately 10% of the strain-specific genes, but the relevance of having such an abundance of these genes is not clear. The type II methyltransferase (MTase) M.HpyAIV, which recognizes GANTC sites, was present in 60% of the H. pylori strains analyzed, whereof 69% were resistant to restriction enzyme digestion, which indicated the presence of an active MTase. H. pylori strains with an inactive M.HpyAIV phenotype contained deletions in regions of homopolymers within the gene, which resulted in premature translational stops, suggesting that M.HpyAIV may be subjected to phase variation by a slipped-strand mechanism. An M.HpyAIV gene mutant was constructed by insertional mutagenesis, and this mutant showed the same viability and ability to induce interleukin-8 in epithelial cells as the wild type in vitro but had, as expected, lost the ability to protect its self-DNA from digestion by a cognate restriction enzyme. The M.HpyAIV from H. pylori strain 26695 was overexpressed in Escherichia coli, and the protein was purified and was able to bind to DNA and protect GANTC sites from digestion in vitro. A bioinformatic analysis of the number of GANTC sites located in predicted regulatory regions of H. pylori strains 26695 and J99 resulted in a number of candidate genes. katA, a selected candidate gene, was further analyzed by quantitative real-time reverse transcription-PCR and shown to be significantly down-regulated in the M.HpyAIV gene mutant compared to the wild-type strain. This demonstrates the influence of M.HpyAIV methylation in gene expression.


2002 ◽  
Vol 70 (9) ◽  
pp. 4968-4976 ◽  
Author(s):  
Susanna Ricci ◽  
Robert Janulczyk ◽  
Lars Björck

ABSTRACT Ferric uptake regulator (Fur) and Fur-like proteins form an important family of transcriptional regulators in many bacterial species. In this work we have characterized a Fur-like protein, the peroxide regulator PerR, in an M1 serotype of Streptococcus pyogenes. To determine the role of PerR in S. pyogenes, we inactivated the gene by allelic replacement. PerR-deficient bacteria showed 48% reduction of 55Fe incorporation from the culture medium. Transcriptional analysis revealed that mtsA, encoding a metal-binding protein of an ABC transporter in S. pyogenes, was transcribed at lower levels than were wild-type cells. Although total iron accumulation was reduced, the growth of the mutant strain was not significantly hampered. The mutant showed hyperresistance to hydrogen peroxide, and this response was induced in wild-type cells by growth in aerobiosis, suggesting that PerR acts as an oxidative stress-responsive repressor. PerR may also participate in the response to superoxide stress, as the perR mutant was more sensitive to the superoxide anion and had a reduced transcription of sodA, which encodes the sole superoxide dismutase of S. pyogenes. Complementation of the mutation with a functional perR gene restored 55Fe incorporation, response to peroxide stress, and transcription of both mtsA and sodA to levels comparable to those of wild-type bacteria. Finally, the perR mutant was attenuated in virulence in a murine air sac model of infection (P < 0.05). These results demonstrate that PerR is involved in the regulation of iron homeostasis and oxidative stress responses and that it contributes to the virulence of S. pyogenes.


Sign in / Sign up

Export Citation Format

Share Document