scholarly journals Population structure and transmission of Mycobacterium bovis in Ethiopia

2021 ◽  
Vol 7 (5) ◽  
Author(s):  
Gizat Almaw ◽  
Getnet Abie Mekonnen ◽  
Adane Mihret ◽  
Abraham Aseffa ◽  
Hawult Taye ◽  
...  

Bovine tuberculosis (bTB) is endemic in cattle in Ethiopia, a country that hosts the largest national cattle herd in Africa. The intensive dairy sector, most of which is peri-urban, has the highest prevalence of disease. Previous studies in Ethiopia have demonstrated that the main cause is Mycobacterium bovis , which has been investigated using conventional molecular tools including deletion typing, spoligotyping and Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR). Here we use whole-genome sequencing to examine the population structure of M. bovis in Ethiopia. A total of 134 M . bovis isolates were sequenced including 128 genomes from 85 mainly dairy cattle and six genomes isolated from humans, originating from 12 study sites across Ethiopia. These genomes provided a good representation of the previously described population structure of M. bovis , based on spoligotyping and demonstrated that the population is dominated by the clonal complexes African 2 (Af2) and European 3 (Eu3). A range of within-host diversity was observed amongst the isolates and evidence was found for both short- and long-distance transmission. Detailed analysis of available genomes from the Eu3 clonal complex combined with previously published genomes revealed two distinct introductions of this clonal complex into Ethiopia between 1950 and 1987, likely from Europe. This work is important to help better understand bTB transmission in cattle in Ethiopia and can potentially inform national strategies for bTB control in Ethiopia and beyond.

2020 ◽  
Author(s):  
Gizat Almaw ◽  
Getnet Abie Mekonnen ◽  
Adane Mihret ◽  
Abraham Aseffa ◽  
Hawult Taye ◽  
...  

AbstractBovine tuberculosis (bTB) is endemic in cattle in Ethiopia, a country that hosts the largest national cattle herd in Africa. The intensive dairy sector, most of which is peri-urban, has the highest prevalence of disease. Previous studies in Ethiopia have demonstrated that the main cause is Mycobacterium bovis (M. bovis), which has been investigated using conventional molecular tools including deletion typing, spoligotyping and Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR). Here we use whole genome sequencing (WGS) to examine the population structure of M. bovis in Ethiopia. A total of 134 M. bovis isolates were sequenced including 128 genomes from 85 mainly dairy cattle and six genomes isolated from humans, originating from 12 study sites across Ethiopia. These genomes provided a good representation of the previously described population structure of M. bovis, based on spoligotyping and demonstrated that the population is dominated by the clonal complexes African 2 (Af2) and European 3 (Eu3). A range of within-host diversity was observed amongst the isolates and evidence was found for both short- and long-distance transmission. Detailed analysis of available genomes from the Eu3 clonal complex combined with previously published genomes revealed two distinct introductions of this clonal complex into Ethiopia between 1950 and 1987, likely from Europe. This work is important to help better understand bTB transmission in cattle in Ethiopia and can potentially inform national strategies for bTB control in Ethiopia and beyond.


2021 ◽  
Vol 7 (5) ◽  
Author(s):  
Rudielle de Arruda Rodrigues ◽  
Flábio Ribeiro Araújo ◽  
Alberto Martín Rivera Dávila ◽  
Rodrigo Nestor Etges ◽  
Julian Parkhill ◽  
...  

Mycobacterium bovis is a causal agent of bovine tuberculosis (bTB), one of the most important diseases currently facing the cattle industry worldwide. Tracing the source of M. bovis infections of livestock is an important tool for understanding the epidemiology of bTB and defining control/eradication strategies. In this study, whole genome sequencing (WGS) of 74 M . bovis isolates sourced from naturally infected cattle in the State of Rio Grande do Sul (RS), southern Brazil, was used to evaluate the population structure of M. bovis in the region, identify potential transmission events and date the introduction of clonal complex (CC) European 2 (Eu2). In silico spoligotyping identified 11 distinct patterns including four new profiles and two CCs, European 1 (Eu1) and Eu2. The analyses revealed a high level of genetic diversity in the majority of herds and identified putative transmission clusters that suggested that within- and between-herd transmission is occurring in RS. In addition, a comparison with other published M. bovis isolates from Argentina, Brazil, Paraguay and Uruguay demonstrated some evidence for a possible cross-border transmission of CC Eu1 into RS from Uruguay or Argentina. An estimated date for the introduction of CC Eu2 into RS in the middle of the 19th century correlated with the historical introduction of cattle into RS to improve existing local breeds. These findings contribute to the understanding of the population structure of M. bovis in southern Brazil and highlight the potential of WGS in surveillance and helping to identify bTB transmission.


2020 ◽  
Vol 69 (4) ◽  
pp. 587-590
Author(s):  
Tetsuya Kakita ◽  
Hisako Kyan ◽  
Masato Miyahira ◽  
Taketoshi Takara ◽  
Eri Nakama ◽  
...  

Leptospirosis is a zoonotic disease caused by pathogenic spirochetes of Leptospira species. It is a public health issue in the tropics, including Okinawa, the southernmost prefecture of Japan. This study reports the first isolation of L. interrogans serogroup Sejroe from two human patients in Japan, and describes its molecular characterization using multilocus sequence typing (MLST) and multiple-locus variable-number tandem repeat analysis (MLVA). MLST on the two isolates, 168036 and 178129, showed that pfkB in 178129 is a novel allele, and that both isolates constitute novel sequence types (STs); ST286 for 168036 and ST287 for 178129. A minimum spanning tree based on seven alleles of L. interrogans indicates that both isolates are genetically close, but are distinct from known L. interrogans serogroup Sejroe strains. MLVA using 11 loci demonstrated that seven of the 11 loci were identical between the two isolates, whereas the identity between the isolates and the seven reference strains of L. interrogans serogroup Sejroe was zero to three loci. These results indicate that the isolates investigated in this study have novel genotypes, and are genetically closest to each other among the known L. interrogans serogroup Sejroe strains.


Author(s):  
Emeli Månsson ◽  
Thor Bech Johannesen ◽  
Åsa Nilsdotter-Augustinsson ◽  
Bo Söderquist ◽  
Marc Stegger

There is increased awareness of the worldwide spread of specific epidemic multidrug-resistant (MDR) lineages of the human commensal Staphylococcus epidermidis . Here, using bioinformatic analyses accounting for population structure, we determined genomic traits (genes, SNPs and k-mers) that distinguish S. epidermidis causing prosthetic-joint infections (PJIs) from commensal isolates from nares, by analysing whole-genome sequencing data from S. epidermidis from PJIs prospectively collected over 10 years in Sweden, and contemporary S. epidermidis from the nares of patients scheduled for arthroplasty surgery. Previously suggested virulence determinants and the presence of genes and mutations linked to antimicrobial resistance (AMR) were also investigated. Publicly available S. epidermidis sequences were used for international extrapolation and validation of findings. Our data show that S. epidermidis causing PJIs differed from nasal isolates not by virulence but by traits associated with resistance to compounds used in prevention of PJIs: β-lactams, aminoglycosides and chlorhexidine. Almost a quarter of the PJI isolates did not belong to any of the previously described major nosocomial lineages, but the AMR-related traits were also over-represented in these isolates, as well as in international S. epidermidis isolates originating from PJIs. Genes previously associated with virulence in S. epidermidis were over-represented in individual lineages, but failed to reach statistical significance when adjusted for population structure. Our findings suggest that the current strategies for prevention of PJIs select for nosocomial MDR S. epidermidis lineages that have arisen from horizontal gene transfer of AMR-related traits into multiple genetic backgrounds.


2021 ◽  
Vol 70 (11) ◽  
Author(s):  
Mark Philip Bugayong ◽  
Hidemasa Izumiya ◽  
Josie M. Bilar ◽  
Masatomo Morita ◽  
Eiji Arakawa ◽  
...  

Introduction. The Philippines, comprising three island groups, namely, Luzon, Visayas and Mindanao, experienced an increase in cholera outbreaks in 2016. Previous studies have shown that Vibrio cholerae isolates obtained from the Philippines are novel hybrid El Tor strains that have evolved in the country and are clearly distinct from those found in Mozambique and Cameroon. Gap statement. The characterization of the strains isolated from outbreaks has been limited to phenotypic characteristics, such as biochemical and serological characteristics, in most previous studies. Aim. We performed multilocus variable-number tandem repeat (VNTR) analysis (MLVA) for V. cholerae isolates obtained from 2015 to 2016 to further characterize and understand the emergence and dissemination of the strains in the Philippines. Methodology. A total of 139 V . cholerae O1 Ogawa biotype El Tor isolates were obtained from the Philippines during diarrhoeal outbreaks in 18 provinces between 2015 and 2016. VNTR data were analysed to classify the MLVA profiles where the large-chromosome types (LCTs) were applied for grouping. Results. We identified 50 MLVA types among 139 isolates originating from 18 provinces, and 14 LCTs. The distribution of the LCTs was variable, and a few were located in specific areas or even in specific provinces. Based on eBURST analysis, 99 isolates with 7 LCTs and 32 MLVA types belonged to 1 group, suggesting that they were related to each other. LCT A was predominant (n=67) and was isolated from Luzon and Visayas. LCT A had 14 MLVA types; however, it mostly emerged during a single quarter of a year. Eight clusters were identified, each of which involved specific MLVA type(s). The largest cluster involved 23 isolates showing 3 MLVA types, 21 of which were MLVA type A-14 isolated from Negros Occidental during quarter 4 of 2016. Comparative analysis showed that almost all isolates from the Philippines were distinct from those in other countries. Conclusions. The genotypic relationship of the V. cholerae isolates obtained during outbreaks in the Philippines was studied, and their emergence and dissemination were elucidated. MLVA revealed the short-term dynamics of V. cholerae genotypes in the Philippines.


2020 ◽  
Vol 58 (11) ◽  
Author(s):  
Thomas A. Kohl ◽  
Katharina Kranzer ◽  
Sönke Andres ◽  
Thierry Wirth ◽  
Stefan Niemann ◽  
...  

ABSTRACT Mycobacterium bovis is the primary cause of bovine tuberculosis (bTB) and infects a wide range of domestic animal and wildlife species and humans. In Germany, bTB still emerges sporadically in cattle herds, free-ranging wildlife, diverse captive animal species, and humans. In order to understand the underlying population structure and estimate the population size fluctuation through time, we analyzed 131 M. bovis strains from animals (n = 38) and humans (n = 93) in Germany from 1999 to 2017 by whole-genome sequencing (WGS), mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) typing, and spoligotyping. Based on WGS data analysis, 122 out of the 131 M. bovis strains were classified into 13 major clades, of which 6 contained strains from both human and animal cases and 7 only strains from human cases. Bayesian analyses suggest that the M. bovis population went through two sharp anticlimaxes, one in the middle of the 18th century and another one in the 1950s. WGS-based cluster analysis grouped 46 strains into 13 clusters ranging in size from 2 to 11 members and involving strains from distinct host types, e.g., only cattle and also mixed hosts. Animal strains of four clusters were obtained over a 9-year span, pointing toward autochthonous persistent bTB infection cycles. As expected, WGS had a higher discriminatory power than spoligotyping and MIRU-VNTR typing. In conclusion, our data confirm that WGS and suitable bioinformatics constitute the method of choice to implement prospective molecular epidemiological surveillance of M. bovis. The population of M. bovis in Germany is diverse, with subtle, but existing, interactions between different host groups.


Microbiology ◽  
2020 ◽  
Vol 166 (8) ◽  
pp. 695-706 ◽  
Author(s):  
Kevin H. Martin ◽  
Grace I. Borlee ◽  
William H. Wheat ◽  
Mary Jackson ◽  
Bradley R. Borlee

Biofilm-associated infections are difficult to eradicate because of their ability to tolerate antibiotics and evade host immune responses. Amoebae and/or their secreted products may provide alternative strategies to inhibit and disperse biofilms on biotic and abiotic surfaces. We evaluated the potential of five predatory amoebae – Acanthamoeba castellanii, Acanthamoeba lenticulata, Acanthamoeba polyphaga, Vermamoeba vermiformis and Dictyostelium discoideum – and their cell-free secretions to disrupt biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium bovis . The biofilm biomass produced by MRSA and M. bovis was significantly reduced when co-incubated with A. castellanii, A. lenticulata and A. polyphaga, and their corresponding cell-free supernatants (CFS). Acanthamoeba spp. generally produced CFS that mediated biofilm dispersal rather than directly killing the bacteria; however, A. polyphaga CFS demonstrated active killing of MRSA planktonic cells when the bacteria were present at low concentrations. The active component(s) of the A. polyphaga CFS is resistant to freezing, but can be inactivated to differing degrees by mechanical disruption and exposure to heat. D. discoideum and its CFS also reduced preformed M. bovis biofilms, whereas V. vermiformis only decreased M. bovis biofilm biomass when amoebae were added. These results highlight the potential of using select amoebae species or their CFS to disrupt preformed bacterial biofilms.


2020 ◽  
Vol 6 (8) ◽  
Author(s):  
Chandler Roe ◽  
Marc Stegger ◽  
Berit Lilje ◽  
Thor Bech Johannesen ◽  
Kim Lee Ng ◽  
...  

Staphylococcus aureus is a colonizing opportunistic pathogen and a leading cause of bloodstream infection with high morbidity and mortality. S. aureus carriage frequency is reportedly between 20 and 40 % among healthy adults, with S. aureus colonization considered to be a risk factor for S. aureus bacteraemia. It is unknown whether a genetic component of the bacterium is associated with S. aureus bacteraemia in comparison to nasal carriage strains. Previous association studies primarily focusing on the clinical outcome of an S. aureus infection have produced conflicting results, often limited by study design challenged by sample collections and the clonal diversity of S. aureus . To date, no study has investigated whether genomic features separate nasal carriage isolates from S. aureus bacteraemia isolates within a single clonal lineage. Here we have investigated whether genomic features, including single-nucleotide polymorphisms (SNPs), genes, or kmers, distinguish S. aureus nasal carriage isolates from bacteraemia isolates that all belong to the same clonal lineage [clonal complex 45 (CC45)] using whole-genome sequencing (WGS) and a genome-wide association (GWA) approach. From CC45, 100 isolates (50 bacteraemia and 50 nasal carriage, geographically and temporally matched) from Denmark were whole-genome sequenced and subjected to GWA analyses involving gene copy number variation, SNPs, gene content, kmers and gene combinations, while correcting for lineage effects. No statistically significant association involving SNPs, specific genes, gene variants, gene copy number variation, or a combination of genes was identified that could distinguish bacteraemia isolates from nasal carriage isolates. The presented results suggest that all S. aureus nasal CC45 isolates carry the potential to cause invasive disease, as no core or accessory genome content or variations were statistically associated with invasiveness.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Quynh Nguyen ◽  
To Thi Nguyen Nguyen ◽  
Phuong Pham ◽  
Vinh Chau ◽  
Lan Phu Huong Nguyen ◽  
...  

Extra-intestinal pathogenic Escherichia coli (ExPEC) ST1193, a globally emergent fluoroquinolone-resistant clone, has become an important cause of bloodstream infections (BSIs) associated with significant morbidity and mortality. Previous studies have reported the emergence of fluoroquinolone-resistant ExPEC ST1193 in Vietnam; however, limited data exist regarding the genetic structure, antimicrobial resistance (AMR) determinants and transmission dynamics of this pandemic clone. Here, we performed genomic and phylogenetic analyses of 46 ST1193 isolates obtained from BSIs and healthy individuals in Ho Chi Minh City, Vietnam, to investigate the pathogen population structure, molecular mechanisms of AMR and potential transmission patterns. We further examined the phylogenetic structure of ST1193 isolates in a global context. We found that the endemic E. coli ST1193 population was heterogeneous and highly dynamic, largely driven by multiple strain importations. Several well-supported phylogenetic clusters (C1–C6) were identified and associated with distinct bla CTX-M variants, including bla CTXM-27 (C1–C3, C5), bla CTXM-55 (C4) and bla CTXM-15 (C6). Most ST1193 isolates were multidrug-resistant and carried an extensive array of AMR genes. ST1193 isolates also exhibited the ability to acquire further resistance while circulating in Vietnam. There were phylogenetic links between ST1193 isolates from BSIs and healthy individuals, suggesting these organisms may both establish long-term colonization in the human intestinal tract and induce infections. Our study uncovers factors shaping the population structure and transmission dynamics of multidrug-resistant ST1193 in Vietnam, and highlights the urgent need for local One Health genomic surveillance to capture new emerging ExPEC clones and to better understand the origins and transmission patterns of these pathogens.


2021 ◽  
Vol 7 (10) ◽  
Author(s):  
Ana C. Reis ◽  
Mónica V. Cunha

Animal tuberculosis (TB) is an emergent disease caused by Mycobacterium bovis , one of the animal-adapted ecotypes of the Mycobacterium tuberculosis complex (MTC). In this work, whole-genome comparative analyses of 70 M . bovis were performed to gain insights into the pan-genome architecture. The comparison across M. bovis predicted genome composition enabled clustering into the core- and accessory-genome components, with 2736 CDS for the former, while the accessory moiety included 3897 CDS, of which 2656 are restricted to one/two genomes only. These analyses predicted an open pan-genome architecture, with an average of 32 CDS added by each genome and show the diversification of discrete M. bovis subpopulations supported by both core- and accessory-genome components. The functional annotation of the pan-genome classified each CDS into one or several COG (Clusters of Orthologous Groups) categories, revealing ‘transcription’ (total average CDSs, n=258), ‘lipid metabolism and transport’ (n=242), ‘energy production and conversion’ (n=214) and ‘unknown function’ (n=876) as the most represented. The closer analysis of polymorphisms in virulence-related genes in a restrict group of M. bovis from a multi-host system enabled the identification of clade-monomorphic non-synonymous SNPs, illustrating clade-specific virulence landscapes and correlating with disease severity. This first comparative pan-genome study of a diverse collection of M. bovis encompassing all clonal complexes indicates a high percentage of accessory genes and denotes an open, dynamic non-conservative pan-genome structure, with high evolutionary potential, defying the canons of MTC biology. Furthermore, it shows that M. bovis can shape its virulence repertoire, either by acquisition and loss of genes or by SNP-based diversification, likely towards host immune evasion, adaptation and persistence.


Sign in / Sign up

Export Citation Format

Share Document