scholarly journals Elucidation of global and national genomic epidemiology of Salmonella enterica serovar Enteritidis through multilevel genome typing

2021 ◽  
Vol 7 (7) ◽  
Author(s):  
Lijuan Luo ◽  
Michael Payne ◽  
Sandeep Kaur ◽  
Dalong Hu ◽  
Liam Cheney ◽  
...  

Salmonella enterica serovar Enteritidis is a major cause of foodborne Salmonella infections and outbreaks in humans. Effective surveillance and timely outbreak detection are essential for public health control. Multilevel genome typing (MGT) with multiple levels of resolution has been previously demonstrated as a promising tool for this purpose. In this study, we developed MGT with nine levels for S. Enteritidis and characterised the genomic epidemiology of S. Enteritidis in detail. We examined 26 670 publicly available S. Enteritidis genome sequences from isolates spanning 101 years from 86 countries to reveal their spatial and temporal distributions. Using the lower resolution MGT levels, globally prevalent and regionally restricted sequence types (STs) were identified; avian associated MGT4-STs were found that were common in human cases in the USA; temporal trends were observed in the UK with MGT5-STs from 2014 to 2018 revealing both long lived endemic STs and the rapid expansion of new STs. Using MGT3 to MGT6, we identified multidrug resistance (MDR) associated STs at various MGT levels, which improves precision of detection and global tracking of MDR clones. We also found that the majority of the global S. Enteritidis population fell within two predominant lineages, which had significantly different propensity of causing large scale outbreaks. An online open MGT database has been established for unified international surveillance of S. Enteritidis. We demonstrated that MGT provides a flexible and high-resolution genome typing tool for S. Enteritidis surveillance and outbreak detection.

2020 ◽  
Author(s):  
Lijuan Luo ◽  
Michael Payne ◽  
Sandeep Kaur ◽  
Dalong Hu ◽  
Liam Cheney ◽  
...  

AbstractSalmonella Enteritidis is a major foodborne pathogen that causes both local and international outbreaks with complex transmission pathways. Invasive infections which are associated with multidrug resistance are an increasing concern around the globe. However, the global epidemiological picture of S. Enteritidis remains unclear due to the lack of a fine scale typing scheme based on genomic sequencing data. Here, using the novel multilevel genome typing (MGT) approach, we have characterised the genomic epidemiology of S. Enteritidis in unpreceded detail. We examined 26,670 publicly available S. Enteritidis whole genome sequences from 86 countries over 101 years to reveal their spatial and temporal distributions. Using MGT4 and MGT5, we identified globally prevalent and regionally restricted STs. Source associated STs were identified, such as poultry associated MGT4-STs, which were common in human cases in the USA. Temporal trends were observed in the UK with MGT5-STs from 2014 to 2018, revealing both long lived endemic STs and the rapid expansion of new STs. Using MGT3 to MGT6, we identified MDR associated STs to facilitate tracking MDR spread. The majority of the global S. Enteritidis population fell within two predominant lineages with significant differences in geographic distribution, outbreak frequency, antimicrobial resistance and mutation rate. An online open MGT database has been established for unified international surveillance of S. Enteritidis. We demonstrated that MGT provides a flexible and high-resolution genome typing tool for S. Enteritidis surveillance and outbreak detection.


2014 ◽  
Vol 53 (1) ◽  
pp. 191-200 ◽  
Author(s):  
Walter Demczuk ◽  
Tarah Lynch ◽  
Irene Martin ◽  
Gary Van Domselaar ◽  
Morag Graham ◽  
...  

A large-scale, whole-genome comparison of CanadianNeisseria gonorrhoeaeisolates with high-level cephalosporin MICs was used to demonstrate a genomic epidemiology approach to investigate strain relatedness and dynamics. Although current typing methods have been very successful in tracing short-chain transmission of gonorrheal disease, investigating the temporal evolutionary relationships and geographical dissemination of highly clonal lineages requires enhanced resolution only available through whole-genome sequencing (WGS). Phylogenomic cluster analysis grouped 169 Canadian strains into 12 distinct clades. While someN. gonorrhoeaemultiantigen sequence types (NG-MAST) agreed with specific phylogenomic clades or subclades, other sequence types (ST) and closely related groups of ST were widely distributed among clades. Decreased susceptibility to extended-spectrum cephalosporins (ESC-DS) emerged among a group of diverse strains in Canada during the 1990s with a variety of nonmosaicpenAalleles, followed in 2000/2001 with thepenAmosaic X allele and then in 2007 with ST1407 strains with thepenAmosaic XXXIV allele. Five genetically distinct ESC-DS lineages were associated withpenAmosaic X, XXXV, and XXXIV alleles and nonmosaic XII and XIII alleles. ESC-DS with coresistance to azithromycin was observed in 5 strains with 23S rRNA C2599T or A2143G mutations. As the costs associated with WGS decline and analysis tools are streamlined, WGS can provide a more thorough understanding of strain dynamics, facilitate epidemiological studies to better resolve social networks, and improve surveillance to optimize treatment for gonorrheal infections.


mBio ◽  
2011 ◽  
Vol 2 (3) ◽  
Author(s):  
T. David Matthews ◽  
Wolfgang Rabsch ◽  
Stanley Maloy

ABSTRACTHost-specific serovars ofSalmonella entericaoften have large-scale chromosomal rearrangements that occur by recombination betweenrrnoperons. Two hypotheses have been proposed to explain these rearrangements: (i) replichore imbalance from horizontal gene transfer drives the rearrangements to restore balance, or (ii) the rearrangements are a consequence of the host-specific lifestyle. Although recent evidence has refuted the replichore balance hypothesis, there has been no direct evidence for the lifestyle hypothesis. To test this hypothesis, we determined therrnarrangement type for 20Salmonella entericaserovar Typhi strains obtained from human carriers at periodic intervals over multiple years. These strains were also phage typed and analyzed for rearrangements that occurred over long-term storage versus routine culturing. Strains isolated from the same carrier at different time points often exhibited different arrangement types. Furthermore, colonies isolated directly from the Dorset egg slants used to store the strains also had different arrangement types. In contrast, colonies that were repeatedly cultured always had the same arrangement type. Estimated replichore balance of isolated strains did not improve over time, and some of the rearrangements resulted in decreased replicore balance. Our results support the hypothesis that the restricted lifestyle of host-specificSalmonellais responsible for the frequent chromosomal rearrangements in these serovars.IMPORTANCEAlthough it was previously thought that bacterial chromosomes were stable, comparative genomics has demonstrated that bacterial chromosomes are dynamic, undergoing rearrangements that change the order and expression of genes. While mostSalmonellastrains have a conserved chromosomal arrangement type, rearrangements are very common in host-specificSalmonellastrains. This study suggests that chromosome rearrangements in the host-specificSalmonella entericaserovar Typhi, the causal agent of typhoid fever, occur within the human host over time. The results also indicate that rearrangements can occur during long-term maintenance on laboratory medium. Although these genetic changes do not limit survival under slow-growth conditions, they may limit the survival ofSalmonellaTyphi in other environments, as predicted for the role of pseudogenes and genome reduction in niche-restricted bacteria.


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4027-4032 ◽  
Author(s):  
Zhiyong Ruan ◽  
Yanwei Wang ◽  
Chi Zhang ◽  
Jinlong Song ◽  
Yi Zhai ◽  
...  

A Gram-staining-positive, spore-forming, obligately anaerobic, acetogenic bacterium, designated LAM1030T, was isolated from methanogenic consortia enriched from biogas slurry collected from the large-scale anaerobic digester of Modern Farming Corporation in Hebei Province, China. Cells of strain LAM1030T were motile, straight or spiral-rod-shaped. Strain LAM1030T could utilize glucose, fructose, maltose, galactose, lactose, sucrose, cellobiose, mannitol, pyruvate, succinic acid and tryptophan as the sole carbon source. Acetic acid, isovaleric acid and butanoic acid were the main products of glucose fermentation. Sodium sulfite was used as an electron acceptor. Growth of strain LAM1030T was completely inhibited by the addition of ampicillin, tetracycline, gentamicin or erythromycin at a concentration of 20 µg ml−1. The main polar lipids of strain LAM1030T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, 11 unknown glycolipids and two unknown phospholipids. No respiratory quinone was detected. The major fatty acids of strain LAM1030T were C16 : 0 (21.1 %), C14 : 0 (10.3 %), summed feature 9 (including C16:0 10-methyl and/or iso-C17:1 ω9c) (11.3% ), summed feature 3 (including C16:1 ω7c and/or C16:1 ω6c) (10.6% ) and iso-C15 : 0 (6.6 %). Analysis of the 16S rRNA gene sequence indicated that strain LAM1030T belonged to the genus Clostridium and was most closely related to Clostridium subterminale DSM 6970T, Clostridium thiosulfatireducens DSM 13105T and Clostridium sulfidigenes DSM 18982T, with 97.0, 96.9 and 96.8 % similarity, respectively. The G+C content of the genomic DNA of strain LAM1030T was 31.2±0.3 mol%. On the basis of its phenotypic, phylogenetic and chemotaxonomic characterization, strain LAM1030T is suggested to represent a novel species of the genus Clostridium , for which the name Clostridium huakuii sp. nov. is proposed. The type strain is LAM1030T ( = ACCC 00698T = JCM 19186T).


Microbiology ◽  
2020 ◽  
Vol 166 (8) ◽  
pp. 785-793
Author(s):  
Shou Miura ◽  
Yukino Tamamura ◽  
Mariko Takayasu ◽  
Miwa Sasaki ◽  
Natsuko Nishimura ◽  
...  

Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium) definitive phage type 104 (DT104), S. enterica subspecies enterica serovar Worthington (S. Worthington) and S. bongori produce ArtA and ArtB (ArtAB) toxin homologues, which catalyse ADP-ribosylation of pertussis toxin-sensitive G protein. ArtAB gene (artAB) is encoded on prophage in DT104 and its expression is induced by mitomycin C (MTC) and hydrogen peroxide (H2O2) that trigger the bacterial SOS response. Although the genetic regulatory mechanism associated with artAB expression is not characterized, it is thought to be associated with prophage induction, which occurs when the RecA-mediated SOS response is triggered. Here we show that subinhibitory concentration of quinolone antibiotics that are SOS-inducing agents, also induce ArtAB production in these Salmonella strains. Both MTC and fluoroquinolone antibiotics such as enrofloxacin-induced artA and recA transcription and artAB-encoding prophage (ArtAB-prophage) in DT104 and S. Worthington. However, in S. bongori , which harbours artAB genes on incomplete prophage, artA transcription was induced by MTC and enrofloxacin, but prophage induction was not observed. Taken together, these results suggest that SOS response followed by induction of artAB transcription is essential for ArtAB production. H2O2-mediated induction of ArtAB prophage and efficient production of ArtAB was observed in DT104 but not in S. Worthington and S. bongori . Therefore, induction of artAB expression with H2O2 is strain-specific, and the mode of action of H2O2 as an SOS-inducing agent might be different from those of MTC and quinolone antibiotics.


2021 ◽  
Vol 7 (11) ◽  
Author(s):  
Isabelle Bernaquez ◽  
Christiane Gaudreau ◽  
Pierre A. Pilon ◽  
Sadjia Bekal

Many public health laboratories across the world have implemented whole-genome sequencing (WGS) for the surveillance and outbreak detection of foodborne pathogens. PulseNet-affiliated laboratories have determined that most single-strain foodborne outbreaks are contained within 0–10 multi-locus sequence typing (MLST)-based allele differences and/or core genome single-nucleotide variants (SNVs). In addition to being a food- and travel-associated outbreak pathogen, most Shigella spp. cases occur through continuous person-to-person transmission, predominantly involving men who have sex with men (MSM), leading to long-term and recurrent outbreaks. Continuous transmission patterns coupled to genetic evolution under antibiotic treatment pressure require an assessment of existing WGS-based subtyping methods and interpretation criteria for cluster inclusion/exclusion. An evaluation of 4 WGS-based subtyping methods [SNVPhyl, coreMLST, core genome MLST (cgMLST) and whole-genome MLST (wgMLST)] was performed on 9 foodborne-, travel- and MSM-related retrospective outbreaks from a collection of 91 Shigella flexneri and 232  Shigella sonnei isolates to determine the methods’ epidemiological concordance, discriminatory power, robustness and ability to generate stable interpretation criteria. The discriminatory powers were ranked as follows: coreMLST<SNVPhyl<cgMLST<wgMLST (range: 0.970–1.000). The genetic differences observed for non-MSM-related Shigella spp. outbreaks respect the standard 0–10 allele/SNV guideline; however, mobile genetic element (MGE)-encoded loci caused inflated genetic variation and discrepant phylogenies for prolonged MSM-related S. sonnei outbreaks via wgMLST. The S. sonnei correlation coefficients of wgMLST were also the lowest at 0.680, 0.703 and 0.712 for SNVPhyl, coreMLST and cgMLST, respectively. Plasmid maintenance, mobilization and conjugation-associated genes were found to be the main source of genetic distance inflation in addition to prophage-related genes. Duplicated alleles arising from the repeated nature of IS elements were also responsible for many false cg/wgMLST differences. The coreMLST approach was shown to be the most robust, followed by SNVPhyl and wgMLST for inter-laboratory comparability. Our results highlight the need for validating species-specific subtyping methods based on microbial genome plasticity and outbreak dynamics in addition to the importance of filtering confounding MGEs for cluster detection.


2021 ◽  
Vol 7 (5) ◽  
Author(s):  
Arnold Bainomugisa ◽  
Ella M. Meumann ◽  
Giri Shan Rajahram ◽  
Rick Twee-Hee Ong ◽  
Lachlan Coin ◽  
...  

Tuberculosis is a leading public health priority in eastern Malaysia. Knowledge of the genomic epidemiology of tuberculosis can help tailor public health interventions. Our aims were to determine tuberculosis genomic epidemiology and characterize resistance mutations in the ethnically diverse city of Kota Kinabalu, Sabah, located at the nexus of Malaysia, Indonesia, Philippines and Brunei. We used an archive of prospectively collected Mycobacterium tuberculosis samples paired with epidemiological data. We collected sputum and demographic data from consecutive consenting outpatients with pulmonary tuberculosis at the largest tuberculosis clinic from 2012 to 2014, and selected samples from tuberculosis inpatients from the tertiary referral centre during 2012–2014 and 2016–2017. Two hundred and eight M . tuberculosis sequences were available for analysis, representing 8 % of cases notified during the study periods. Whole-genome phylogenetic analysis demonstrated that most strains were lineage 1 (195/208, 93.8 %), with the remainder being lineages 2 (8/208, 3.8 %) or 4 (5/208, 2.4 %). Lineages or sub-lineages were not associated with patient ethnicity. The lineage 1 strains were diverse, with sub-lineage 1.2.1 being dominant (192, 98 %). Lineage 1.2.1.3 isolates were geographically most widely distributed. The greatest diversity occurred in a border town sub-district. The time to the most recent common ancestor for the three major lineage 1.2.1 clades was estimated to be the year 1966 (95 % HPD 1948–1976). An association was found between failure of culture conversion by week 8 of treatment and infection with lineage 2 (4/6, 67 %) compared with lineage 1 strains (4/83, 5 %) (P<0.001), supporting evidence of greater virulence of lineage 2 strains. Eleven potential transmission clusters (SNP difference ≤12) were identified; at least five included people living in different sub-districts. Some linked cases spanned the whole 4-year study period. One cluster involved a multidrug-resistant tuberculosis strain matching a drug-susceptible strain from 3 years earlier. Drug resistance mutations were uncommon, but revealed one phenotype–genotype mismatch in a genotypically multidrug-resistant isolate, and rare nonsense mutations within the katG gene in two isolates. Consistent with the regionally mobile population, M. tuberculosis strains in Kota Kinabalu were diverse, although several lineage 1 strains dominated and were locally well established. Transmission clusters – uncommonly identified, likely attributable to incomplete sampling – showed clustering occurring across the community, not confined to households or sub-districts. The findings indicate that public health priorities should include active case finding and early institution of tuberculosis management in mobile populations, while there is a need to upscale effective contact investigation beyond households to include other contacts within social networks.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Nicole Stoesser ◽  
Hang T. T. Phan ◽  
Anna C. Seale ◽  
Zoie Aiken ◽  
Stephanie Thomas ◽  
...  

ABSTRACT Carbapenem resistance in Enterobacterales is a public health threat. Klebsiella pneumoniae carbapenemase (encoded by alleles of the blaKPC family) is one of the most common transmissible carbapenem resistance mechanisms worldwide. The dissemination of blaKPC historically has been associated with distinct K. pneumoniae lineages (clonal group 258 [CG258]), a particular plasmid family (pKpQIL), and a composite transposon (Tn4401). In the United Kingdom, blaKPC has represented a large-scale, persistent management challenge for some hospitals, particularly in North West England. The dissemination of blaKPC has evolved to be polyclonal and polyspecies, but the genetic mechanisms underpinning this evolution have not been elucidated in detail; this study used short-read whole-genome sequencing of 604 blaKPC-positive isolates (Illumina) and long-read assembly (PacBio)/polishing (Illumina) of 21 isolates for characterization. We observed the dissemination of blaKPC (predominantly blaKPC-2; 573/604 [95%] isolates) across eight species and more than 100 known sequence types. Although there was some variation at the transposon level (mostly Tn4401a, 584/604 [97%] isolates; predominantly with ATTGA-ATTGA target site duplications, 465/604 [77%] isolates), blaKPC spread appears to have been supported by highly fluid, modular exchange of larger genetic segments among plasmid populations dominated by IncFIB (580/604 isolates), IncFII (545/604 isolates), and IncR (252/604 isolates) replicons. The subset of reconstructed plasmid sequences (21 isolates, 77 plasmids) also highlighted modular exchange among non-blaKPC and blaKPC plasmids and the common presence of multiple replicons within blaKPC plasmid structures (>60%). The substantial genomic plasticity observed has important implications for our understanding of the epidemiology of transmissible carbapenem resistance in Enterobacterales for the implementation of adequate surveillance approaches and for control.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Kyrylo Bessonov ◽  
Chad Laing ◽  
James Robertson ◽  
Irene Yong ◽  
Kim Ziebell ◽  
...  

Escherichia coli is a priority foodborne pathogen of public health concern and phenotypic serotyping provides critical information for surveillance and outbreak detection activities. Public health and food safety laboratories are increasingly adopting whole-genome sequencing (WGS) for characterizing pathogens, but it is imperative to maintain serotype designations in order to minimize disruptions to existing public health workflows. Multiple in silico tools have been developed for predicting serotypes from WGS data, including SRST2, SerotypeFinder and EToKi EBEis, but these tools were not designed with the specific requirements of diagnostic laboratories, which include: speciation, input data flexibility (fasta/fastq), quality control information and easily interpretable results. To address these specific requirements, we developed ECTyper (https://github.com/phac-nml/ecoli_serotyping) for performing both speciation within Escherichia and Shigella , and in silico serotype prediction. We compared the serotype prediction performance of each tool on a newly sequenced panel of 185 isolates with confirmed phenotypic serotype information. We found that all tools were highly concordant, with 92–97 % for O-antigens and 98–100 % for H-antigens, and ECTyper having the highest rate of concordance. We extended the benchmarking to a large panel of 6954 publicly available E. coli genomes to assess the performance of the tools on a more diverse dataset. On the public data, there was a considerable drop in concordance, with 75–91 % for O-antigens and 62–90 % for H-antigens, and ECTyper and SerotypeFinder being the most concordant. This study highlights that in silico predictions show high concordance with phenotypic serotyping results, but there are notable differences in tool performance. ECTyper provides highly accurate and sensitive in silico serotype predictions, in addition to speciation, and is designed to be easily incorporated into bioinformatic workflows.


2020 ◽  
Author(s):  
Gerald Tegha ◽  
Emily J. Ciccone ◽  
Robert Krysiak ◽  
James Kaphatika ◽  
Tarsizio Chikaonda ◽  
...  

Antimicrobial resistance (AMR) is a global threat, including in sub-Saharan Africa. However, little is known about the genetics of resistant bacteria in the region. In Malawi, there is growing concern about increasing rates of antimicrobial resistance to most empirically used antimicrobials. The highly drug resistant Escherichia coli sequence type (ST) 131, which is associated with the extended spectrum β-lactamase blaCTX-M-15 , has been increasing in prevalence globally. Previous data from isolates collected between 2006 and 2013 in southern Malawi have revealed the presence of ST131 and the blaCTX-M-15 gene in the country. We performed whole genome sequencing (WGS) of 58 clinical E. coli isolates at Kamuzu Central Hospital, a tertiary care centre in central Malawi, collected from 2012 to 2018. We used Oxford Nanopore Technologies (ONT) sequencing, which was performed in Malawi. We show that ST131 is observed more often (14.9% increasing to 32.8%) and that the blaCTX-M-15 gene is occurring at a higher frequency (21.3% increasing to 44.8%). Phylogenetics indicates that isolates are highly related between the central and southern geographic regions and confirms that ST131 isolates are contained in a single group. All AMR genes, including blaCTX-M-15 , were widely distributed across sequence types. We also identified an increased number of ST410 isolates, which in this study tend to carry a plasmid-located copy of blaCTX-M-15 gene at a higher frequency than blaCTX-M-15 occurs in ST131. This study confirms the expanding nature of ST131 and the wide distribution of the blaCTX-M-15 gene in Malawi. We also highlight the feasibility of conducting longitudinal genomic epidemiology studies of important bacteria with the sequencing done on site using a nanopore platform that requires minimal infrastructure.


Sign in / Sign up

Export Citation Format

Share Document