scholarly journals Epidemiology and population structure of Haemophilus influenzae causing invasive disease

2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Anna Carrera-Salinas ◽  
Aida González-Díaz ◽  
Laura Calatayud ◽  
Julieta Mercado-Maza ◽  
Carmen Puig ◽  
...  

This study provides an update on invasive Haemophilus influenzae disease in Bellvitge University Hospital (2014–2019), reporting its evolution from a previous period (2008–2013) and analysing the non-typeable H. influenzae (NTHi) population structure using a clade-related classification. Clinical data, antimicrobial susceptibility and serotyping were studied and compared with those of the previous period. Population structure was assessed by multilocus sequence typing (MLST), SNP-based phylogenetic analysis and clade-related classification. The incidence of invasive H. influenzae disease remained constant between the two periods (average 2.07 cases per 100 000 population), while the 30 day mortality rate decreased (20.7–14.7 %, respectively). Immunosuppressive therapy (40 %) and malignancy (36 %) were the most frequent comorbidities. Ampicillin and fluoroquinolone resistance rates had increased between the two periods (10–17.6 % and 0–4.4 %, respectively). NTHi was the main cause of invasive disease in both periods (84.3 and 85.3 %), followed by serotype f (12.9 and 8.8 %). NTHi displayed high genetic diversity. However, two clusters of 13 (n=20) and 5 sequence types (STs) (n=10) associated with clade V included NTHi strains of the most prevalent STs (ST3 and ST103), many of which showed increased frequency over time. Moreover, ST103 and ST160 from clade V were associated with β-lactam resistance. Invasive H. influenzae disease is uncommon, but can be severe, especially in the elderly with comorbidities. NTHi remains the main cause of invasive disease, with ST103 and ST160 (clade V) responsible for increasing β-lactam resistance over time.

Author(s):  
Emeli Månsson ◽  
Thor Bech Johannesen ◽  
Åsa Nilsdotter-Augustinsson ◽  
Bo Söderquist ◽  
Marc Stegger

There is increased awareness of the worldwide spread of specific epidemic multidrug-resistant (MDR) lineages of the human commensal Staphylococcus epidermidis . Here, using bioinformatic analyses accounting for population structure, we determined genomic traits (genes, SNPs and k-mers) that distinguish S. epidermidis causing prosthetic-joint infections (PJIs) from commensal isolates from nares, by analysing whole-genome sequencing data from S. epidermidis from PJIs prospectively collected over 10 years in Sweden, and contemporary S. epidermidis from the nares of patients scheduled for arthroplasty surgery. Previously suggested virulence determinants and the presence of genes and mutations linked to antimicrobial resistance (AMR) were also investigated. Publicly available S. epidermidis sequences were used for international extrapolation and validation of findings. Our data show that S. epidermidis causing PJIs differed from nasal isolates not by virulence but by traits associated with resistance to compounds used in prevention of PJIs: β-lactams, aminoglycosides and chlorhexidine. Almost a quarter of the PJI isolates did not belong to any of the previously described major nosocomial lineages, but the AMR-related traits were also over-represented in these isolates, as well as in international S. epidermidis isolates originating from PJIs. Genes previously associated with virulence in S. epidermidis were over-represented in individual lineages, but failed to reach statistical significance when adjusted for population structure. Our findings suggest that the current strategies for prevention of PJIs select for nosocomial MDR S. epidermidis lineages that have arisen from horizontal gene transfer of AMR-related traits into multiple genetic backgrounds.


Author(s):  
Eliana Alcaraz ◽  
Daniela Centrón ◽  
Gabriela Camicia ◽  
María Paula Quiroga ◽  
José Di Conza ◽  
...  

Introduction. Stenotrophomonas maltophilia has emerged as one of the most common multi-drug-resistant pathogens isolated from people with cystic fibrosis (CF). However, its adaptation over time to CF lungs has not been fully established. Hypothesis. Sequential isolates of S. maltophilia from a Brazilian adult patient are clonally related and show a pattern of adaptation by loss of virulence factors. Aim. To investigate antimicrobial susceptibility, clonal relatedness, mutation frequency, quorum sensing (QS) and selected virulence factors in sequential S. maltophilia isolates from a Brazilian adult patient attending a CF referral centre in Buenos Aires, Argentina, between May 2014 and May 2018. Methodology. The antibiotic resistance of 11 S. maltophilia isolates recovered from expectorations of an adult female with CF was determined. Clonal relatedness, mutation frequency, QS variants (RpfC–RpfF), QS autoinducer (DSF) and virulence factors were investigated in eight viable isolates. Results. Seven S. maltophilia isolates were resistant to trimethoprim–sulfamethoxazole and five to levofloxacin. All isolates were susceptible to minocycline. Strong, weak and normomutators were detected, with a tendency to decreased mutation rate over time. XbaI PFGE revealed that seven isolates belong to two related clones. All isolates were RpfC–RpfF1 variants and DSF producers. Only two isolates produced weak biofilms, but none displayed swimming or twitching motility. Four isolates showed proteolytic activity and amplified stmPr1 and stmPr2 genes. Only the first three isolates were siderophore producers. Four isolates showed high resistance to oxidative stress, while the last four showed moderate resistance. Conclusion. The present study shows the long-time persistence of two related S. maltophilia clones in an adult female with CF. During the adaptation of the prevalent clones to the CF lungs over time, we identified a gradual loss of virulence factors that could be associated with the high amounts of DSF produced by the evolved isolates. Further, a decreased mutation rate was observed in the late isolates. The role of all these adaptations over time remains to be elucidated from a clinical perspective, probably focusing on the damage they can cause to CF lungs.


2021 ◽  
Vol 70 (9) ◽  
Author(s):  
Teck-Phui Chua ◽  
Kaveesha Bodiyabadu ◽  
Dorothy A. Machalek ◽  
Suzanne M. Garland ◽  
Catriona S. Bradshaw ◽  
...  

Introduction. Failure of fluoroquinolones, the principal treatment option for macrolide-resistant Mycoplasma genitalium infections, has recently emerged. This is of particular concern for men who have sex with men (MSM), who have high proportions of macrolide-resistant M. genitalium infections. Treatment failure with moxifloxacin is likely the result of single nucleotide polymorphisms (SNPs) in parC, whilst concurrent gyrA mutations may play a role. Gap Statement. The levels of fluoroquinolone resistance and dual-class (i.e. macrolide and fluoroquinolone) resistance in M. genitalium among asymptomatic MSM is unknown. Aim. To (i) determine the proportion of fluoroquinolone resistance and dual-class resistance in M. genitalium infections among asymptomatic MSM, (ii) explore any clinical and behavioural associations with fluoroquinolone resistance, and (iii) determine the distribution of antibiotic resistance among M. genitalium mgpB sequence types (STs). Methodology. M. genitalium positive samples (N=94) were obtained from 1001 asymptomatic MSM enrolled in a study at Melbourne Sexual Health Centre (Carlton, Australia) between August 2016 and September 2017. Sanger sequencing was performed to determine the proportion of M. genitalium infections with SNPs in parC that have previously been associated with failure of moxifloxacin (corresponding to amino changes S83I, D83R, D87Y and D87N) and in gyrA (corresponding to amino acid changes M95I, D99N, D99Y and D99G). Associations between clinical/behavioural factors and parC SNPs were examined. Strain typing was performed by sequencing a portion of the mgpB gene. Results. The proportion of MSM with infections harbouring parC and gyrA SNPs was 13.0 % [95 % confidence interval (CI): 6.8–23.2 %] and 4.7 % (95 % CI: 1.1–13.4 %), respectively; dual-class resistance was 13.0 %. No significant clinical/behavioural associations were found. Antibiotic resistance was not restricted to specific mgpB STs. Conclusion. One in eight (13 %) of asymptomatic MSM with M. genitalium had an infection with dual-class-resistance mutations. Typing by mgpB sequence suggested fluoroquinolone resistance is arising from independent mutation events. This study illustrates that asymptomatic MSM may act as a reservoir for antibiotic-resistant M. genitalium .


Author(s):  
Eduardo Juscamayta-López ◽  
Faviola Valdivia ◽  
Sara Morales ◽  
Luis Fernando Donaires ◽  
Victor Fiestas-Solórzano ◽  
...  

Asymptomatic carriers are a likely source of transmission of Neisseria meningitidis to close contacts who are placed at a higher risk for invasive meningococcal disease (IMD). Although N. meningitidis ciprofloxacin-resistance is rare, there have been an increase in the reports of resistant isolates mainly in patients diagnosed with IMD, and little is known about the N. meningitidis ciprofloxacin-resistance in the carrier populations. We performed a pharyngeal carriage study during a 2017 military setting outbreak in Peru, caused by a ciprofloxacin-resistant N. meningitidis B. The isolates analysed came from two hospitalized cases and six asymptomatic carriers. Whole-genome sequence-based analysis was performed and showed that strains carrying the Thr91Ile mutation, in the gene encoding for subunit A of DNA gyrase (gyrA), were responsible for the fluoroquinolone resistance (MICs ≥0.256 µg ml−1) and were closely related to highly virulent strains from France, Norway and the UK. Phylogenetic analysis of the gyrA gene revealed that likely these Peruvian isolates acquired resistance through horizontal gene transfer from Neisseria lactamica . Our study provides evidence for the emergence and propagation of ciprofloxacin-resistant N. meningitidis B from asymptomatic carriers, and recommends the introduction of serogroup B vaccines for high-risk populations.


2021 ◽  
Vol 7 (5) ◽  
Author(s):  
Rudielle de Arruda Rodrigues ◽  
Flábio Ribeiro Araújo ◽  
Alberto Martín Rivera Dávila ◽  
Rodrigo Nestor Etges ◽  
Julian Parkhill ◽  
...  

Mycobacterium bovis is a causal agent of bovine tuberculosis (bTB), one of the most important diseases currently facing the cattle industry worldwide. Tracing the source of M. bovis infections of livestock is an important tool for understanding the epidemiology of bTB and defining control/eradication strategies. In this study, whole genome sequencing (WGS) of 74 M . bovis isolates sourced from naturally infected cattle in the State of Rio Grande do Sul (RS), southern Brazil, was used to evaluate the population structure of M. bovis in the region, identify potential transmission events and date the introduction of clonal complex (CC) European 2 (Eu2). In silico spoligotyping identified 11 distinct patterns including four new profiles and two CCs, European 1 (Eu1) and Eu2. The analyses revealed a high level of genetic diversity in the majority of herds and identified putative transmission clusters that suggested that within- and between-herd transmission is occurring in RS. In addition, a comparison with other published M. bovis isolates from Argentina, Brazil, Paraguay and Uruguay demonstrated some evidence for a possible cross-border transmission of CC Eu1 into RS from Uruguay or Argentina. An estimated date for the introduction of CC Eu2 into RS in the middle of the 19th century correlated with the historical introduction of cattle into RS to improve existing local breeds. These findings contribute to the understanding of the population structure of M. bovis in southern Brazil and highlight the potential of WGS in surveillance and helping to identify bTB transmission.


2021 ◽  
Vol 7 (5) ◽  
Author(s):  
Gizat Almaw ◽  
Getnet Abie Mekonnen ◽  
Adane Mihret ◽  
Abraham Aseffa ◽  
Hawult Taye ◽  
...  

Bovine tuberculosis (bTB) is endemic in cattle in Ethiopia, a country that hosts the largest national cattle herd in Africa. The intensive dairy sector, most of which is peri-urban, has the highest prevalence of disease. Previous studies in Ethiopia have demonstrated that the main cause is Mycobacterium bovis , which has been investigated using conventional molecular tools including deletion typing, spoligotyping and Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR). Here we use whole-genome sequencing to examine the population structure of M. bovis in Ethiopia. A total of 134 M . bovis isolates were sequenced including 128 genomes from 85 mainly dairy cattle and six genomes isolated from humans, originating from 12 study sites across Ethiopia. These genomes provided a good representation of the previously described population structure of M. bovis , based on spoligotyping and demonstrated that the population is dominated by the clonal complexes African 2 (Af2) and European 3 (Eu3). A range of within-host diversity was observed amongst the isolates and evidence was found for both short- and long-distance transmission. Detailed analysis of available genomes from the Eu3 clonal complex combined with previously published genomes revealed two distinct introductions of this clonal complex into Ethiopia between 1950 and 1987, likely from Europe. This work is important to help better understand bTB transmission in cattle in Ethiopia and can potentially inform national strategies for bTB control in Ethiopia and beyond.


2020 ◽  
Vol 2 (12) ◽  
Author(s):  
Dodi Safari ◽  
Agatha Nabilla Lestari ◽  
Miftahuddin Majid Khoeri ◽  
Wisnu Tafroji ◽  
Ernawati A. Giri-Rachman ◽  
...  

In this study, the prevalence of nasopharyngeal carriage and the antimicrobial susceptibility profile of Haemophilus influenzae were investigated in children and adults with HIV infection in Jakarta, Indonesia. Thirty-four H. influenzae isolates were identified in the children (n=16/90; 18%) and adults (n=18/200; 9%) infected with HIV. All isolates were nontypeable H. influenzae and were less susceptible to ampicillin (62%) and trimethoprim/sulfamethoxazole (41%). In this study, the H. influenzae strains carried by patients infected with HIV were dominated by non-capsulated types.


2021 ◽  
Vol 70 (6) ◽  
Author(s):  
Kosei Mizoi ◽  
Takeaki Wajima ◽  
Emi Tanaka ◽  
Hidemasa Nakaminami ◽  
Norihisa Noguchi

The increasing incidence of Haemophilus influenzae with decreased susceptibility to quinolones (quinolone low-susceptible H. influenzae ) in Japan has raised concerns about therapeutic failure. Thus, assessment of effective antimicrobial agents is necessary to establish an effective therapeutic strategy against resulting infections. In this study, in vitro bactericidal effects of quinolones on low-susceptible H. influenzae strains were evaluated using time-kill curve analysis. For tosufloxacin, log reduction values for low-susceptible strains were significantly lower than those for susceptible strains at both Cmax and 1/2 Cmax. Conversely, although the log reduction values were lower for susceptible strains, the Cmax of levofloxacin and β-lactams (amoxicillin and cefditoren) indicated bactericidal effects. In addition, higher concentrations of tosufloxacin at 2×Cmax and 4×Cmax had bactericidal effects on not only susceptible but also low-susceptible strains. These data strongly suggest that we should consider the presence of low-susceptible strains and reconsider the appropriate dosage of tosufloxacin for treatment, especially for paediatric patients.


2020 ◽  
Vol 6 (6) ◽  
Author(s):  
Lu Ya Ruth Wang ◽  
Cassandra C. Jokinen ◽  
Chad R. Laing ◽  
Roger P. Johnson ◽  
Kim Ziebell ◽  
...  

Verotoxigenic Escherichia coli (VTEC) are food- and water-borne pathogens associated with both sporadic illness and outbreaks of enteric disease. While it is known that cattle are reservoirs of VTEC, little is known about the genomic variation of VTEC in cattle, and whether the variation in genomes reported for human outbreak strains is consistent with individual animal or group/herd sources of infection. A previous study of VTEC prevalence identified serotypes carried persistently by three consecutive cohorts of heifers within a closed herd of cattle. This present study aimed to: (i) determine whether the genomic relatedness of bovine isolates is similar to that reported for human strains associated with single source outbreaks, (ii) estimate the rates of genome change among dominant serotypes over time within a cattle herd, and (iii) identify genomic features of serotypes associated with persistence in cattle. Illumina MiSeq genome sequencing and genotyping based on allelic and single nucleotide variations were completed, while genome change over time was measured using Bayesian evolutionary analysis sampling trees. The accessory genome, including the non-protein-encoding intergenic regions (IGRs), virulence factors, antimicrobial-resistance genes and plasmid gene content of representative persistent and sporadic cattle strains were compared using Fisher’s exact test corrected for multiple comparisons. Herd strains from serotypes O6:H34 (n=22), O22:H8 (n=30), O108:H8 (n=39), O139:H19 (n=44) and O157:H7 (n=106) were readily distinguishable from epidemiologically unrelated strains of the same serotype using a similarity threshold of 10 or fewer allele differences between adjacent nodes. Temporal-cohort clustering within each serotype was supported by date randomization analysis. Substitutions per site per year were consistent with previously reported values for E. coli ; however, there was low branch support for these values. Acquisition of the phage-encoded Shiga toxin 2 gene in serotype O22:H8 was observed. Pan-genome analyses identified accessory regions that were more prevalent in persistent serotypes (P≤0.05) than in sporadic serotypes. These results suggest that VTEC serotypes from a specific cattle population are highly clonal with a similar level of relatedness as human single-source outbreak-associated strains, but changes in the genome occur gradually over time. Additionally, elements in the accessory genomes may provide a selective advantage for persistence of VTEC within cattle herds.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Quynh Nguyen ◽  
To Thi Nguyen Nguyen ◽  
Phuong Pham ◽  
Vinh Chau ◽  
Lan Phu Huong Nguyen ◽  
...  

Extra-intestinal pathogenic Escherichia coli (ExPEC) ST1193, a globally emergent fluoroquinolone-resistant clone, has become an important cause of bloodstream infections (BSIs) associated with significant morbidity and mortality. Previous studies have reported the emergence of fluoroquinolone-resistant ExPEC ST1193 in Vietnam; however, limited data exist regarding the genetic structure, antimicrobial resistance (AMR) determinants and transmission dynamics of this pandemic clone. Here, we performed genomic and phylogenetic analyses of 46 ST1193 isolates obtained from BSIs and healthy individuals in Ho Chi Minh City, Vietnam, to investigate the pathogen population structure, molecular mechanisms of AMR and potential transmission patterns. We further examined the phylogenetic structure of ST1193 isolates in a global context. We found that the endemic E. coli ST1193 population was heterogeneous and highly dynamic, largely driven by multiple strain importations. Several well-supported phylogenetic clusters (C1–C6) were identified and associated with distinct bla CTX-M variants, including bla CTXM-27 (C1–C3, C5), bla CTXM-55 (C4) and bla CTXM-15 (C6). Most ST1193 isolates were multidrug-resistant and carried an extensive array of AMR genes. ST1193 isolates also exhibited the ability to acquire further resistance while circulating in Vietnam. There were phylogenetic links between ST1193 isolates from BSIs and healthy individuals, suggesting these organisms may both establish long-term colonization in the human intestinal tract and induce infections. Our study uncovers factors shaping the population structure and transmission dynamics of multidrug-resistant ST1193 in Vietnam, and highlights the urgent need for local One Health genomic surveillance to capture new emerging ExPEC clones and to better understand the origins and transmission patterns of these pathogens.


Sign in / Sign up

Export Citation Format

Share Document